6502.org Forum  Projects  Code  Documents  Tools  Forum
It is currently Sun Apr 28, 2024 8:35 pm

All times are UTC




Post new topic Reply to topic  [ 4 posts ] 
Author Message
PostPosted: Sun Apr 28, 2024 2:25 pm 
Offline

Joined: Wed Jan 08, 2014 3:31 pm
Posts: 567
I am going to do a completely silly project and build some logic gates using some 5 volt relays. The data sheet says the coil resistance is 130 ohms and 192 mW power. I think this means that roughly 38 mA of current will trigger the coil, which is pretty small.

These relays already have a fly back diode built into their coil, so no need there. But I want to use two diodes as inputs to create an OR gate, and use that to a relay inverter to create a NOR gate. Now if these were transistors I would use switching diodes for this purpose, but relays aren't transistors. However, 38 mA seems small enough that switching diodes would work here too.

Does my reasoning seem sound?

If anyone is curious, I want to build something like a relay counter and make a lot of noise while using the logic outputs to turn on some blinkenlights. Basically a really slow and noisy output device with a 50s retro-future vibe.


Top
 Profile  
Reply with quote  
PostPosted: Sun Apr 28, 2024 3:01 pm 
Offline
User avatar

Joined: Fri Dec 11, 2009 3:50 pm
Posts: 3349
Location: Ontario, Canada
Martin_H wrote:
However, 38 mA seems small enough that switching diodes would work here too.

Does my reasoning seem sound?
What a delightfully silly project! :) And yes, switching diodes should be fine, as they're generally rated for more current than that.

I like the counter idea. However, it might take some monkeying to make it work. To form each flip-flop, I'm imagining you'll have two relays cross-coupled to form a multivibrator, is that right? And there'll be some capacitors whose values need to be experimented with...

-- Jeff

_________________
In 1988 my 65C02 got six new registers and 44 new full-speed instructions!
https://laughtonelectronics.com/Arcana/ ... mmary.html


Top
 Profile  
Reply with quote  
PostPosted: Sun Apr 28, 2024 3:27 pm 
Offline

Joined: Wed Jan 08, 2014 3:31 pm
Posts: 567
Dr Jefyll wrote:
I like the counter idea. However, it might take some monkeying to make it work. To form each flip-flop, I'm imagining you'll have two relays cross-coupled to form a multivibrator, is that right? And there'll be some capacitors whose values need to be experimented with...

Thanks. Yes, some relay flip flops will form the basis for the counter. You're correct that some capacitors might be needed, but the whole thing is going to take some trial and error as relay logic isn't something I have done much of.


Top
 Profile  
Reply with quote  
PostPosted: Sun Apr 28, 2024 5:46 pm 
Offline
User avatar

Joined: Thu May 28, 2009 9:46 pm
Posts: 8151
Location: Midwestern USA
Dr Jefyll wrote:
Martin_H wrote:
I like the counter idea. However, it might take some monkeying to make it work. To form each flip-flop, I'm imagining you'll have two relays cross-coupled to form a multivibrator, is that right?

You guys might find this hard to believe, but I am the inventor of a SR-type relay flip-flop circuit that has a single input.  It consists of two relays, four steering diodes and some resistors.  The circuit is designed so it consistently powers up in a known state, as its original application was in a traffic control system I designed many years ago.  I have the paper copy of the patent application for the traffic control system buried somewhere in my “archives” (US patent 3,893,097, which was issued to yours truly and the guy who was my boss at the time—he knew less about electricity than I know about performing brain surgery :D).  I'll see if I can dig it up and post the flop circuit.

The system in which the flop circuit was used was built with Potter & Brumfield R10 miniature cradle relays, which were available in 2 form C through 8 form C, and were, at the time, the smallest relays to have such a wider range of contact forms.  In those days (early 1970s), use of TTL-style logic circuits in traffic control systems was not yet accepted practice, so everything was electromechanical.  1N400x diodes (usually 1N4002) were used as logic elements where needed.

While the P&B R10 series continues to be available, there are plenty of other choices in small relays, such as from Omron and Panasonic.  Attached are some data sheets for some of my favorites.  Also, Schottky diodes may be used in place of the 1N400x type to get less forward drop and circuit heating.

Attachment:
File comment: Omron G5V1 Low-Signal Relays
g5v1_series.pdf [752.88 KiB]
Downloaded 1 time
Attachment:
File comment: Omron G5V2 Low-Signal Relays
g5v2_series.pdf [1.08 MiB]
Downloaded 1 time
Attachment:
File comment: Panasonic NC Series Relays
NC_series.pdf [323.32 KiB]
Downloaded 1 time
Attachment:
File comment: Potter & Brumfield R10 Relays
relay_r10.pdf [952.6 KiB]
Downloaded 1 time

_________________
x86?  We ain't got no x86.  We don't NEED no stinking x86!


Top
 Profile  
Reply with quote  
Display posts from previous:  Sort by  
Post new topic Reply to topic  [ 4 posts ] 

All times are UTC


Who is online

Users browsing this forum: No registered users and 29 guests


You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot post attachments in this forum

Search for:
Jump to: