mGE 65C02

Enhanced software performance including 27 additional OP codes
encompassing ten new instructions and two additional
addressing modes.

66 microprocessor instructions.
15 addressing modes.

178 operational codes.

1MHz, 2MHz operation.

Operates at frequencies as low
as 200 Hz for even lower power
consumption (pseudo-static: stop during @ high).

Interrupt capability.

Lower power consumption.
4mA @ 1MHz,

+5 volt power supply.

8-bit bidirectional data bus.
Bus Compatible with M6800.
Non-maskable interrupt.

40 pin dual-in-line packaging.

8-bit parallel processing

Compatible with NMOS 6500 series
microprocessors.

Decimal and binary arithmetic.

® Pipeline architecture.

* 64 K-byte addressable memory. ® Programmable stack pointer

The NCR CMOS 6502 is an 8-bit microprocessor which is soft- ® Variable length stack.
ware compatible with the NMOS 6502. The NCR65C02 hardware
interfaces with all 6500 peripherals. The enhancements include
ten additional instructions, expanded operational codes and two
new addressing modes. This microprocessor has all of the advan-
tages of CMOS technology: low power consumption, increased
noise immunity and higher reliability. The CMOS 6502 is a low
power high performance microprocessor with applications in the
consumer, business, automotive and communications market.

® Optional internat_pullups for
(RDY, IRQ, S0, NMI and RES}

PIN FUNCTIONAL
CONFIGURATION BLOCK DIAGRAM

RES

—
0, 1OUT)
0, ouT) S0

REGISTER SECTION CONTROL SECTION ——m=-

RES TRQ NMI

INTERRUPT
LOGIC

]

@ (NI —

NC AD

j
|

(TN
[REGISTER
r

|

|
NC A1] { -~ _.K::>
RW A2 et ‘ REG\STER " ~ apY & PPy
a 0@
D0 A3] al
ABL A STA] SYNG E o
D1 At] T | S _ b 73
z - ML v
02 A5 | s - 2w
Ik =y INSTRUCTION ao
B3 Ab —etty £ DECODE TIMING =
| CONTROL (]
Da A7 - ‘ - |' 8 E
R
05 ADDRESS < f g 2
8Us
o6 T ACCUMULATOR) ! 1
a8 i A 1 Qo
] - i [—
o 3 ; ==
A15 A9 - < CLOCK @ (IN)
! < GENERATOR
AT0 z PROCESSOR
Ard 1 =1 STATUS OSCILLATOR
AT - 1= ! REGISTER P @, ouT)
A13 ABh z!
A12] i L e ooun
A2 — %
ESER 1 e
vss i
A4
|
i DATA BUS J INSTRUCTION
A | BUFFER REGISTER
N T Lo
HITL e
H 4 o1
LEGEND DY 02
D3 DATA
04 8uUs
{ =g BIT LINE o8
D?

| e tBITLINE
i
*

Specifications are subject to
without notice.
change without 425

Copyright ©1982 by NCR Corporation, Dayton, Ohio, USA

This Material Copyrighted By Its Respective Manufacturer

INC R

= ABSOLUTE MAXIMUM RATINGS:

(Vpp =5.0V £ 5%, Vs =0V, Ta = 0°to + 70°C}

426

This Materia

RATING SYMBOL VALUE UNIT
SUPPLY VOLTAGE Voo —0.3t0+7.0 \Y
INPUT VOLTAGE VIN —0.3to +7.0 \%
OPERATING TEMP. Ta O0to+70 °C
STORAGE TEMP. Tstg —55 to + 150 °C
= PIN FUNCTION
PIN FUNCTION
A0 - A15 Address Bus
DO - D7 Data Bus
TRQ * Interrupt Request
RDY * Ready
ML Memory Lock
NMI* Non-Maskable Interrupt
SYNC Synchronize
RES* Reset
SO* Set Overflow
NC No Connection
R/W Read/Write
VDD Power Supply {(+5V)
VSS internal Logic Ground
%0 Clock Input
01,02 Clock Output
*This pin has an optional internal pullup for a No Connect condition.
= DC CHARACTERISTICS
SYMBOL MIN. TYP. MAX UNIT
Input High Voltage
@0(|N) Vin Vss+2.4 — VDD \
Input High Voitage
RES, NMI, RDY, TRQ, Data, S.0. Vgg + 2.0 - — v
Input Low Voltage
@9 (IN) Vi Vgg -0.3 - Vgg+ 0.4 \%
RES, NMi, RDY, IRQ, Data, S.0. — — Vgg + 0.8 v
Input Leakage Current
(Vin =0to 5.25V, Vpp = 5.25V) lin
With pullups ~-30 - +30 HA
Without pullups - — +1.0 MA
Three State (Off State) Input Current
(Vin =04 1024V, Ve =5.25V)
Data Lines lTs) — - 10 MA
Output High Voltage
(lon =-100 uAdc, Vpp =475V
SYNC, Data, AO-A15, R/W) VoH Vss + 2.4 - = \%
Qut Low Voltage
(1oL = 1.6mAde, Vpp =4.75V
SYNC, Data, AO-A15, R/W) VoL - - Vgs + 0.4 v
Supply Current f = 1MHz Ipp - - 4 mA
Supply Current f=2MHz lop — - 8 mA
Capacitance C pF
(VIN =0, TA = 25°C, f = 1MHz)
Logic Cin - — 5
Data - — 10
A0-A15, R/W, SYNC Cout - — 10
@0 (IN) C@g (IN) - - 10

Copyrighted By Its Respective Mnufacturer

65C02
= AC CHARACTERISTICS vpp=5.0V 5% Ta =0°Cto 70°C, Load = 1 TTL + 130 pF

1MHZ 2MHZ 3MHZ
Parameter Symbol Min Max Min Max Min Max Unit
Delay Time, @g (N} to 82 (OUT) toLy - 60 — 60 20 60 nS
Delay Time, @1 {OUT) to @2 (OUT) toLy1 -20 20 -20 20 —-20 20 nS
Cycle Time teve 1.0 5000% 0.50 5000% 0.33 5000™ [T
Clock Pulse Width Low tpL 460 - 220 - 160 — nS
Clock Pulse Width High tpy 460 — 220 — 160 - nS
Fall Time, Rise Time tg, tr — 25 — 25 — 25 nS
Address Hold Time tan 20 - 20 — 0 - nS
Address Setup Time taps — 225 - 140 - 110 nS
Access Time tacc 650 — 310 — 170 — nS
Read Data Hold Time toHR 10 — 10 — 10 - nS
Read Data Setup Time tbsu 100 — 60 — 60 - nS
Write Data Delay Time tmps — 30 . 30 — 30 nS
Write Data Hold Time tonw 20 = 20 — 15 - nS
SO Setup Time tso 100 - 100 ~ 100 - nS
Processor Control Setup Time™** tpcs 200 — 150 — 150 — nS
SYNC Setup Time tsyne — 225 - 140 - 100 nsS
ML Setup Time L - 225 - 140 — 100 nS
Input Clock Rise/Fall Time tFgo, tR@o — 25 - 25 — 25 nS

*NCRB5C02 can be held static with @2 high.
**This parameter must only be met to guarantee that the signal will be recognized at the current clock cycle.

= MICROPROCESSOR OPERATIONAL ENHANCEMENTS

Function NMOS 6502 Microprocessor NCR65C02 Microprocessor
Indexed addressing across page boundary. | Extra read of invalid address. Extra read of last instruction byte.
Execution of invalid op codes. Some terminate only by reset. Results |All are NOPs (reserved for future use).
are undefined. Op Code Bytes Cycles

X2 2 2

X3, X7, XB, XF 1 1

44 2 3

54, D4, F4 2 4

5C 3 8

DC, FC 3 4 FO
Jump indirect, operand = XXFF, Page address does not increment. Page address increments and adds one 5 5

additional cycle. =2
Read/modify/write instructions at One read and two write cycles. Two read and one write cycle. 2 3
effective address. g g
Decimal flag. Indeterminate after reset. Initialized to binary mode {D=0) after Oa

reset and interrupts. 2 2
Flags after decimal operation. Invalid N, V and Z flags. Valid flag adds one additional cycle. Qo
Interrupt after fetch of BRK instruc- Interrupt vector is loaded, BRK vector |BRK is executed, then interrupt is ==
tion. is ignored, executed.

= MICROPROCESSOR HARDWARE ENHANCEMENTS

Function NMOS 6502 NCR65C02
Assertion of Ready RDY during Ignored. Stops processor during @2.
write operations.
Unused input-only pins (TRQ, NMI, Must be connected to low impedance |Connected internally by a high-
RDY, RES, SO). signal to avoid noise problems. resistance to Vpp (approximately 250
K ohm.)

427

This Material Copyrighted By Its Respective Manufacturer

N C R

= TIMING DIAGRAM

%o

@1

02

ADDR, R/W
READ DATA
WRITE DATA
SYNC

ML

ROY, TG
NMI, RES
S0

ﬂ?—-

X

= Yecs

e — tSO

|

Note: All timing is referenced from a high voltage of 2.0 volts and a low voltage of 0.8 volts.

= NEW INSTRUCTION MNEMONICS

HEX

80
3A
1A
DA
S5A
FA
7A
9C
9E
64
74
1C
14
oC
04

MNEMONIC

BRA
DEA
INA
PHX
PHY
PLX
PLY
STZ
STZ
STZ
STZ
TRB
TRB
TSB
TSB

DESCRIPTION

Branch relative always [Relative]

Decrement accumulator [Accum]

Increment accumulator [Accum]

Push X on stack [tmplied]

Push Y on stack [Implied]

Pull X from stack [Implied]

Pull Y from stack [Implied]

Store zero [Absolute]

Store zero [ABS, X]

Store zero [Zero page]

Store zero [ZPG,X]

Test and reset memory bits with accumulator [Absolute]
Test and reset memory bits with accumulator [Zero page]
Test and set memory bits with accumulator [Absolute]
Test and set memory bits with accumulator [Zero page]

= ADDITIONAL INSTRUCTION ADDRESSING MODES

HEX
72

3C

428 92

This Materi al

MNEMONIC

ADC
AND
BIT
BIT
CMP
EOR
JMP
LDA
ORA
SBC
STA

DESCRIPTION

Add memory to accumulator with carry {(ZPG)]
“AND’ memory with accumulator [(ZPG)]

Test memory bits with accumulator {ABS, X]

Test memory bits with accumulator [ZPG, X]
Compare memory and accumulator [(ZPG)]
“Exclusive Or”’ memory with accumulator [(ZPG)]
Jump {New addressing mode) [ABS(IND,X}]

Load accumulator with memory [(ZPG)]

“OR'' memory with accumulator [(ZPG}]
Subtract memory from accumulator with borrow [(ZPG)]
Store accumulator in memory [(ZPG)]

Copyrighted By Its Respective Mnufacturer

65C02

»= MICROPROCESSOR PROGRAMMING MODEL

, o |7N V[T Telol Iz—lﬂo PROCESSOR STATUS
[A] AccumuLaTOR A REG P
1 Y Emoex REGISTER Y CARRY 1 = TRUE
. 7L X (])INDEX REGISTER X ﬁ%%%i%?i;:;{g%g
[PCH fJ’ P;:L %PROGRAM COUNTER PC gs,é:&,\g,\x;’,\?g;uim(
STACK POINTER S NEGATIVE 1 = NEG.

= FUNCTIONAL DESCRIPTION

Timing Control

The timing control unit keeps track of the instruction
cycle being monitored. The unit is set to zero each time
an instruction fetch is executed and is advanced at the
beginning of each phase one clock pulse for as many
cycles as is required to complete the instruction. Each
data transfer which takes place between the registers de-
pends upon decoding the contents of both the instruc-
tion register and the timing control unit.

Program Counter

The 16-bit program counter provides the addresses which
step the microprocessor through sequential instructions
in a program,

Each time the microprocessor fetches an instruction
from program memory, the lower byte of the program
counter (PCL) is placed on the low-order bits of the
address bus and the higher byte of the program counter
(PCH) is placed on the high-order 8 bits. The counter is
incremented each time an instruction or data is fetched
from program memory.

Instruction Register and Decode

Instructions fetched from memory are gated onto the
internal data bus. These instructions are latched into the
instruction register, then decoded, along with timing and
interrupt signals, to generate control signals for the var-
jous registers.

Arithmetic and Logic Unit (ALU)

All arithmetic and logic operations take place in the
ALU including incrementing and decrementing internal
registers {except the program counter}. The ALU has no
internal memory and is used only to perform logical and
transient numerical operations.

Accumulator

The accumulator is a general purpose 8-bit register that
stores the results of most arithmetic and logic operations,
and in addition, the accumulator usually contains one of
the two data words used in these operations,

Index Registers

There are two 8-bit index registers (X and Y), which
may be used to count program steps or to provide an
index value to be used in generating an effective address.

When executing an instruction which specifies indexed
addressing, the CPU fetches the op code and the base
address, and modifies the address by adding the index
register to it prior to performing the desired operation.
Pre- or post-indexing of indirect addresses is possible (see
addressing modes).

Stack Pointer

The stack pointer is an 8-bit register used to control the
addressing of the variable-length stack on page one. The
stack pointer is automatically incremented and decre-
mented under control of the microprocessor to perform
stack manipulations under direction of either the program
or interrupts (NMI and IRQ). The stack allows simple
implementation of nested subroutines and muitiple level
interrupts. The stack pointer should be initialized before
any interrupts or stack operations occur.

Processor Status Register

The 8-bit processor status register contains seven status
flags. Some of the flags are controlled by the program,
others may be controlied both by the program and the
CPU. The 6500 instruction set contains a number of
conditional branch instructions which are designed to
allow testing of these flags (see microprocessor program-
ming model).

This Material Copyrighted By Its Respective Manufacturer

429

[723
0T
w
[
=2
[- N
=
o
Q
o
[+
e
=

MICROPROCESSORS

430

This Materia

N C R

= ADDRESSING MODES

Fifteen addressing modes are available to the user of the
NCR66C02 microprocessor. The addressing modes are
described in the following paragraphs:

Implied Addressing [Implied]

In the implied addressing mode, the address containing
the operand is implicitly stated in the operation code of
the instruction.

Accumulator Addressing [Accum]

This form of addressing is represented with a one byte
instruction and implies an operation on the accumu-
lator.

immediate Addressing [Immediate]

With immediate addressing, the operand is contained in
the second byte of the instruction; no further memory
addressing is required.

Absolute Addressing [Absolute]

For absolute addressing, the second byte of the instruc-
tion specifies the eight low-order bits of the effective
address, while the third byte specifies the eight high-order
bits. Therefore, this addressing mode allows access to the
total 64K bytes of addressable memory.

Zero Page Addressing [Zero Page]

Zero page addressing allows shorter code and execution
times by only fetching the second byte of the instruction
and assuming a zero high address byte. The careful use
of zero page addressing can result in significant increase
in code efficiency.

Absolute Indexed Addressing [ABS, X or ABS, Y]
Absolute indexed addressing is used in conjunction with
X or Y index register and is referred to as ‘‘Absolute, X,”
and “Absolute, Y. The effective address is formed by
adding the contents of X or Y to the address contained
in the second and third bytes of the instruction. This
mode allows the index register to contain the index or
count value and the instruction to contain the base
address. This type of indexing allows any location refer-
encing and the index to modify multiple fields, resulting
in reduced coding and execution time.

Zero Page Indexed Addressing [ZPG, X or ZPG, Y]

Zero page absolute addressing is used in conjunction
with the index register and is referred to as ““Zero Page,
X" or ““Zero Page, Y.”" The effective address is calculated
by adding the second byte to the contents of the index
register. Since this is a form of ‘“Zero Page’’ addressing,
the content of the second byte references a location in
page zero. Additionally, due to the '’Zero Page’ address-
ing nature of this mode, no carry is added to the high-
order eight bits of memory, and crossing of page boun-
daries does not occur,

Relative Addressing [Relative]
Relative addressing is used only with branch instructions;

it establishes a destination for the conditional branch.
The second byte of the instruction becomes the operand
which is an ““Offset’’ added to the contents of the pro-
gram counter when the counter is set at the next in-
struction. The range of the offset is —128 to +127
bytes from the next instruction.

Zero Page Indexed Indirect Addressing [(IND, X)}

With zero page indexed indirect addressing (usually re-
ferred to as indirect X) the second byte of the instruction
is added to the contents of the X index register; the
carry is discarded. The result of this addition points to a
memory location on page zero whose contents is the low-
order eight bits of the effective address. The next mem-
ory location in page zero contains the high-order eight
bits of the effective address. Both memory locations
specifying the high- and low-order bytes of the effective
address must be in page zero.

*Absolute Indexed Indirect Addressing [ABS(IND, X}]
{Jump instruction Only)

With absolute indexed indirect addressing the contents of
the second and third instruction bytes are added to the
X register. The result of this addition, points to a memory
location containing the lower-order eight bits of the
effective address. The next memory location contains
the higher-order eight bits of the effective address.

Indirect indexed Addressing [(IND), Y]

This form of addressing is usually referred to as Indirect,
Y. The second byte of the instruction points to a mem-
ory location in page zero. The contents of this memory
location are added to the contents of the Y index regis-
ter, the result being the low-order eight bits of the effec-
tive address. The carry from this addition is added to the
contents of the next page zero memory location, the
result being the high-order eight bits of the effective
address.

*Zero Page Indirect Addressing [(ZPG)]
In the zero page indirect addressing mode,. the second
byte of the instruction points to a memory location on
page zero containing the low-order byte of the effective
address. The next location on page zero contains the
high-order byte of the effective address.

Absolute Indirect Addressing [(ABS)]

{Jump Instruction Only)

The second byte of the instruction contains the low-order
eight bits of a memory location. The high-order eight
bits of that memory location is contained in the third
byte of the instruction. The contents of the fully speci-
fied memory location is the low-order byte of the effec-
tive address. The next memory location contains the
high-order byte of the effective address which is loaded
into the 16 bit program counter.

NOTE: * = New Address Modes

Copyrighted By Its Respective Mnufacturer

This Materi al

= SIGNAL DESCRIPTION

Address Bus (A0-A15)
AO0-A15 forms a 16-bit address bus for memory and /O
exchanges on the data bus. The output of each address
line is TTL compatible, capable of driving one standard
TTL load and 130pF.

Clocks (@g, @1, and 03)

@p is a TTL level input that is used to generate the inter-
nal clocks in the 6502, Two full level output clocks are
generated by the 6502. The @2 clock output is in phase
with @0. The @1 output pin is 180° out of phase with 0.
(See timing diagram.)

Data Bus (D0-D7)

The data lines (DO-D7) constitute an 8-bit bidirectional
data bus used for data exchanges to and from the device
and peripherals. The outputs are three-state buffers
capable of driving one TTL load and 130 pF.

Interrupt Request {IRQ)

This TTL compatible input requests that an interrupt
sequence begin within the microprocessor. The [RQ is
sampled during @2 operation; if the interrupt flag in the
processor status register is zero, the current instruction
is completed and the interrupt sequence begins during
@ 1. The program counter and processor status register
are stored in the stack. The microprocessor will then set
the interrupt mask flag high so that no further IRQs
may occur. At the end of this cycle, the program counter
tow will be loaded from address FFFE, and program
counter high from location FFFF, transferring program
control to the memory vector located at these addresses.
The RDY signal must be in the high state for any inter-
rupt to be recognized. A 3K ohm external resistor should
be used for proper wire OR operation.

Memory Lock (ML)

In a multiprocessor system, the ML output indicates the
need to defer the rearbitration of the next bus cycle to
ensure the integrity of read-modify-write instructions.
ML goes low during ASL, DEC, INC, LSR, ROL, ROR,
TRB, TSB memory referencing instructions. This signal
is low for the modify and write cycles.

Non-Maskable Interrupt (NMI)

A negative-going edge on this input requests that a non-
maskable interrupt sequence be generated within the
microprocessor. The NM1 is sampled during @2; the cur-
rent instruction is completed and the interrupt sequence
begins during @1. The program counter is loaded with
the interrupt vector from locations FFFA {low byte)
and FFFB (high byte), thereby transferring program con-
trol to the non-maskable interrupt routine.

Note: Since this interrupt is non-maskable, another NMI
can occur before the firstis finished. Care should be taken
when using NMI to avoid this.

65C02

Ready (RDY)

This input allows the user to single-cycle the micropro-
cessor on all cycles including write cycles. A negative
transition to the low state, during or coincident with
phase one (@1), will halt the microprocessor with the out-
put address lines reflecting the current address being
fetched. This condition will remain through a subsequent
phase two (02) in which the ready signal is low. This fea-
ture allows microprocessor interfacing with low-speed
memory as well as direct memory access (DMA).

Reset (RES)

This input is used to reset the microprocessor. Reset
must be held low for at least two clock cycles after
VDD reaches operating voltage from a power down. A
positive transistion on this pin will then cause an initiali-
zation sequence to begin. Likewise, after the system has
been operating, a low on this line of at least two cycles
will cease microprocessing activity, followed by initial-
ization after the positive edge on RES.

When a positive edge is detected, there is an initialization
sequence lasting six clock cycles. Then the interrupt
mask flag is set, the decimal mode is cleared, and the pro-
gram counter is loaded with the restart vector from loca-
tions FFFC (low byte) and FFFD (high byte). This is
the start location for program control. This input should
be high in normal operation.

Read/Write (R/W)

This signal is normally in the high state indicating that
the microprocessor is reading data from memory or {/O
bus. In the low state the data bus has valid data from the
microprocessor to be stored at the addressed memory
location.

Set Overflow (§0)

A negative transition on this line sets the overflow bit in
the status code register. The signal is sampled on the trail-
ing edge of @1.

Synchronize (SYNC)

This output line is provided to identify those cycles dur-
ing which the microprocessor is doing an OP CODE
fetch. The SYNC line goes high during @9 0fan OP CODE
fetch and stays high for the remainder of that cycle. if
the RDY line is pulled low during the @1 clock pulse in
which SYNC went high, the processor will stop in its
current state and will remain in the state until the RDY
line goes high. In this manner, the SYNC signal can be
used to control RDY to cause single instruction execu-
tion.

Copyrighted By Its Respective Mnufacturer

(7]
[- 4
w
-
2
o
=
o
O
o
[+
e
=

MICROPROCESSORS

431

N CR|

= INSTRUCTION SET — ALPHABETICAL SEQUENCE

ADC Add Memory to Accumulator with Carry LDX Load Index X with Memory
AND “AND’ Memory with Accumulator LDY Load Index Y with Memory
ASL Shift One Bit Left LSR Shift One Bit Right
BCC Branch on Carry Clear NOP No Operation
BCS Branch on Carry Set ORA "OR’ Memory with Accumulator
BEQ Branch on Result Zero PHA Push Accumulator on Stack
BIT Test Memory Bits with Accumutator PHP Push Processor Status on Stack
BMI Branch on Result Minus +* PHX Push Index X on Stack
BNE Branch on Result not Zero * PHY Push Index Y on Stack
BPL Branch on Resuit Plus PLA Pull Accumulator from Stack
*BRA Branch Always PLP Pull Processor Status from Stack
BRK Force Break *PLX Pull Index X from Stack
BVC Branch on Overflow Clear *PLY PuliIndex Y from Stack
BVS Branch on Overflow Set ROL Rotate One Bit Left
CLC Clear Carry Flag ROR Rotate One Bit Right
CLD Clear Decimal Mode RTI Return from Interrupt
CLI Clear InterruptDisable Bit RTS Return from Subroutine
CLV Clear Overflow Flag SBC Subtract Memory from Accumulator with Borrow
CMP Compare Memory and Accumulator SEC Set Carry Flag
CPX Compare Memory and Index X SED Set Decimal Mode
CPY Compare Memory and Index Y SEl Set Interrupt Disable Bit
*DEA Decrement Accumulator STA Store Accumulator in Memory
DEC Decrement by One STX Store Index X in Memory
DEX Decrement Index X by One STY Store Index Y in Memory
DEY Decrement Index Y by One *STZ Store Zero in Memory
EOR "Exclusive-or”’ Memory with Accumulator TAX Transfer Accumulator to Index X
*INA Increment Accumulator TAY Transfer Accumulator to Index Y
{NC Increment by One *TRB Test and Reset Memory Bits with Accumulator
INX Increment Index X by One *TSB Test and Set Memory Bits with Accumulator
INY Increment Index Y by One TSX Transfer Stack Pointer to Index X
JMP Jump to New Location TXA Transfer index X to Accumulator
JSR Jump to New Location Saving Return Address TXS Transfer Index X to Stack Pointer
LDA Load Accumulator with Memory TYA Transfer Index Y to Accumulator
Note: * = New Instruction
= MICROPROCESSOR OP CODE TABLE
S
D 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 BRK ORA TSB*| ORA ASL PHP ORA ASL TSB* ORA ASL
ind, X zpg zpg zpg imm A abs abs abs
1 BPL ORA [ORAxt TRB* | ORA ASL CcLC ORA INA* TRB* ORA ASL
rel ind, Y (zpg) zpg zpg, X | zpg, X abs, Y A abs abs, X abs, X
2 JSR AND BIT AND ROL PLP AND ROL BIT AND ROL
abs ind, X zpg zpg zpg mm A abs abs abs
3 BMI AND |AND* T BIT* | AND | ROL SEC AND |DEA* BIT*F AND ROL
rel ind, Y (zpg) zpg, X | zpg, X | zpg, X abs, Y A abs, X abs, X | abs, X
4 RTI EOR EOR LSR PHA EOR LSR Jme EOR LSR
ind, X zpg zpg imm A abs abs abs
5 BvC EOR EOR* T EOR LSR CLi EOR PHY * EOR LSR
rel ind, Y {zpg) zpg, X zpg, X abs, Y abs, X | abs, X
6 RTS ADC STZ+* ADC ROR PLA ADC ROR JmP ADC ROR
ind, X zpg zpg 2pg imm A (abs) abs abs
7 BVS ADC |ADC*T sTZ* | ADC ROR SEi ADC | PLY* JMPxT ADC ROR
rel ind, Y (zpg) zpg, X | zpg, X zpg, X i abs, Y abs {ind, X)| abs, X abs, X
8 BRA* STA STY STA STX DEY BIT* TXA STY STA STX
rel ind, X zpg zpg zpg imm abs abs abs
9 BCC STA sTAa*t STY STA STX TYA STA TXS STZ* STA STZ*
rel ind, Y (zpg) zpg, X | zpg, X | zpg. Y abs, Y abs abs, X abs, X
A LDY LDA LDX LDY LDA LDX TAY LDA TAX LDY LDA LDX
imm ind, X mm zpg zZpg zpg imm abs abs abs
B BCS LDA LDAxT LDY LDA LOX CLVv LDA TSX LDY LDA LDX
rel ind, Y {zpg) zpg, X | zpg, X | zpg, Y abs, Y abs, X abs, X abs, Y
[CPY CmP CPY CMP DEC INY CMP DEX CPY CMP DEC
imm ind, X zpg zpg zpg imm abs abs abs
D BNE CmP CMP *t CMP DEC CLD CMP PHX* CMP DEC
rel ind, Y (zpg) zpg, X | zpg, X abs, Y abs, X abs, X
E CPX SBC CPX SBC INC INX SBC NOP CcPX SBC INC
imm ind, X zpg zpg zpg imm abs abs abs
F BEQ SBC sgC*t SBC INC SED SBC PLX* SBC INC
rel ind, Y (zpg} zpg, X | zpg, X abs, Y abs, X | abs, X
o 1 2 3 4 5 6 7 8 9 A B C D E F

432 Note: * = New OP Codes
Note: T = New Address Modes

This Materia

Copyrighted By Its Respective Mnufacturer

65C02
= OPERATIONAL CODES, EXECUTION TIME, AND MEMORY
REQUIREMENTS

IMME-{ ABSO- | ZERO IM- { {IND, [{{ND}, RELA- ABS PROCESSOR
DIATE| LUTE | PAGE |ACCUM|PLIED| X) Y |ZPG, X|ZPG, Y|ABS, X| ABS, Y| TIVE | (ABS) |(IND, X (ZPG) | STATUS CODES
76543210
MNE; OPERATION OP| n| # OP| n|# | OP| | #|OP | n|#|OP|n | #|OP [n| #{OP | n |#|OP|n | #|OP|n [# |OP [n|#|OP|n |# 0P n| #lOP | n|#[OPin # jOP|n |#[N VB D 1 Z C|MNE
ADC[A+M+C+A 1,3)| 69/ 2|2|6D[4|3[65|3]2 616(2[71(5(2|75]a|2 70(4(3|79{4{3 72|8|2jn v Z claDC
AND|A AM=A 1) | 29|2|2|20|4|3]25|3}2 21 (6[2[315(2|35(4|2 30(4(3|39(4(3 32(s5[2|N Z . |anD
ASL R« ___9-o0 (1) OE|6|3[06(5/2|0A[2[1 . 16(6(2 1E(6(3 N Z c{AsL
BCC (Branch if C=0 (2) 90(2{2] BCC
BCS |Branch if C=1 (2) B0|2|2] BCS
BEQ !Branch if 2=1 (2 : Fo|2|2]|eEa
BIT [AAM (4,5)| 89|2(2|2c|4|3|24|3|2 34|42 3cia|3 Mremge ... Z L {BIT
BMI [Branch if N=1 2 30(2|2{BMI
BNE |Branch if Z=0 (2) Do|2|2 BNE
8PL |Branch if N=0 (2) 10)2{2 BPL
BRA [Branch Aiways (2) 80(2(2 . . BRA
BRK | Break 00|71 1 BRK
BVC |Branch if V=0 12) 50(2(2 . . .|svc
BVS |Branch if V=1 (2 70(22 |svs
cLC [0~+C 18[21 . . ojcLC
clofo+p pg|2|10 cLD
cLl o1 58(21 . .0 ctt
cLV [o+v 88|21 .0 cLv
CMP (A - M (1) 1¢9|2|2/cDj4|3|Cs3|2 C1i6(2|D1|5|2(D5|4(2 oo|4}3|D9|4|3 D2{s5|2|N z c|cmp
CPX |X-M €0|2|2/EC|4|3|€4|3|2] N . 2 c|ePx
cPY [v.-m co{2{2{cc|4/3|ca3|2 N z clcpy
DEA|A-1+A 3A(2|1 N z .|DEA
DEC|M-1+M 31 CE|6[3]C65(2 D6|6(2 DE|s|3 N z .|pEC
DEX|X -1+Xx cal2[1 N Z |DEX
DEY|Y-1+Y 88/2)1 N . z . |DEY
EOR[AvM~=A 492|240 |4|3[45/3(2 41(6{2|51 52|56 [a}2 5D[4(3(59(4(3 52|52{N 2 .|EoR
INA |A+1+A 1A(2{1 N Z .|INA
INC [M+1+M 1) EE|6[3|E6(5[2 F6|6(2 FE|6]3 N . Z .|INC
INX (X +1+X Egf2[1 N . Z L INX
INY |Y+1+v c8l2[1 N 2 .|INY
IMP [Jump to new loc ac(3]3] 6c|6(3|7c(63 o IMP
JSR [Jump Subroutine 206(3 JSR
LDA|M~A (1) | A9|2|2|AD|4|3|AS| 3|2 A1|6]2|81[5]2|85|42] 8D|4{3|89|4|3 B2|5|2|N Z {LDA
LDX M= X (1) | A2(2{2|AE|4[3]A6| 3|2 86|42 BE[4|3 N . Z . |LDX
LDY|M~+Y (1) | Aol 2({2|Ac|4[3{Aq 32 84|4|2 BC|4[3 N z .|LDY,
LSR [0+ 9-@ (th 4€|6|3(46[5(2{4A (2|1 5662 SE|6|3 0. z c|Lsm
NOP |[PC + 1+PC EA2[1 NOP
ORA[AVM=A (11 |09|2|2|oo|a|3|0s|3|2 01(6]2[11(5/2[15 4|2 10(4|3} 1943 12|5]2|N .. . Z .|ORA
PHA|A M, S-1+5 48 (3|1 . . JIPHA
PHP [P*Mg S -1+§ 083t PHP
PHX X *Mg §-1+8 DA|3(1 PHX
PHY [Y*M; S-1+5 5A[3[1 . PHY
PLA S+ 1+S Mg A 68{af1 N Z . |pLA
PLP |S+1+S Mg+P 2841 NV. 1D ZC|PLP
PLX [S+1+S M +X FAl41 N z [PLx
PLY [S+1+5 Mg+Y 7A (a1 N z .JpLy
ROL| (G g-{g-] (1) 2E(6(3)26 (5 |2[2A (2|1 36|62 3E|6(3 N Z GROL
ROR (1) 6E (63|66 |5|2(6A (2|1 76(6(2 7E|6(3 N . . Z GROR
RTI . 406 (1 NV . 1D 1 2CRTI
RTS | Return from Subr. 60{6 |1 L. . RTS
SBC|A-M-T+A (1,3) | E9l2|2|eD|4{3(E5]{3]2 E1(6{2|F1[512(F5|a[2 FDja|3|Fol4[3 F2(5(2[N v . . ZCsBC
SEC {1+C 38(2[1 . . 1[sEC .
SED [1+D Fg(211 1 SED o
SEI |11 78|21 . 1. |sel o
STA|A*M 8D |(4(3(85 (3|2 81|6|2/91|6{2{95|a|2 9D|s{3lo9 5|3 92|5/2). . .[sTA .“'_"u)
STX [X+M 8E [4]3[86(3[2 96(4[2 Lo]sTX Dm
STY |Y+m 8C|4|3ga|3]2 94 |4|2 STY oo
STZ [00+M 9C|4(3|64(3[2 74|4{2 9E [5(3 . sTZ =0
TAX|A*X lAal2 |1 N . Z |TAX O
TAY[A+Y AB(2 [1 N . . Z |TAY O
TRB[AAM=M (a) 1€ 1631452 . Z.|TRB 28
TSB [AVM=M (a) oc |6(3|04|s|2 L z . |Tss [T
TSX (S X BAI2 [1 N .2 . |Tsx ==
TXA|X+A 8a2 |1 N z _|TxA ==
TXS [X~*S 94 |2 |1 . TXS
TYA[Y=>A 982 /1 N z |Tva
Notes:
1. Add 1 to n"’ if page boundary is crossed. X iIndex X + Add n No. Cycles
2. Add 1 to “n" if branch occurs to same page. Y Index Y — Subtract # No. Bytes
Add 2 to “'n” if branch occurs to different page. A Accumulator A And Mg Memory bit 6
3. Add 1 to “n” if decimal mode. M Memory per effective address VvV Or B M7 Memory bit 7
4. V bit equals memory bit 6 prior to execution. Ms Memory per stack pointer A~ Exclusive or

N bit equals memory bit 7 prior to execution.
*8. The immediate addressing mode of the BIT instruction leaves bits 6&7
(V & N} in the Processor Status Code Register unchanged.

433

This Material Copyrighted By Its Respective Manufacturer

