
This method of breaking down
and understanding someone 
else’s Apple machine language
code is – to say the least – very
unique. Here are full details on
how to rapidly crack both the 
form and the function of any 
tough program. It takes only 
one-tenth of the time of more 
orthodox methods.

TEARING INTO
MACHINE LANGUAGE CODE

Enhancement

This enhancement works on all
Apples and knockoffs. There are
additional features available in

the Apple IIe.

TEARING INTO MACHINE LANGUAGE CODE

Check into the top thirty Apple programs used today and guess what? At 
this writing, thirty out of thirty will run wholly, or at least partly, in machine 
language!

So, while BASIC language people are busy foisting computer literacy off 
onto the unwashed masses, and while Pascal people are stuffily trying to 
salvage what scant few shards remain of the once mighty computer science 
theocracy, and while FORTH people are out acting like spoiled brats… while all 
of this is happening…

Machine language programmers are laughing to themselves all the way to 
the bank!

http://www.tinaja.com/images//apple3.jpg


30    Enhancement 3

The evidence is in and it is overwhelming. Cash on the line. If you want to 
write a classic program or a best selling program, it must execute either 
wholly, or in part, in machine language.

Why?

Because machine language is far and away the fastest running, the most 
compact, the most flexible, the most versatile, and the one and only language 
that most fully utilizes all of the Apple’s resources.

The only sure way to learn machine language programming is to do lots of 
it on your own. But one thing that can help you a lot is to tear apart the 
winning machine language programs of others to see what makes them tick.

You might also like to modify someone else’s machine language program to
suit your own needs. Maybe you would like to locate the scroll hooks in the 
HRCG High-Resolution Character Generator. Or perhaps you want to modify 
the original Apple Writer to output imbedded print format commands to your 
daisywheel. Or change FID to add your own "undelete file" command. Or 
maybe you have to modify a printer driver to handle HIRES graphics dumps. Or
you might need some stunning animation. Or want to know what makes an 
adventure tick. Or whatever.

At any rate, if you brute-force attack someone else’s machine language 
program and if the program is more than a few hundred bytes long, chances 
are it will take you a very long time to crack it to the point where you think you
understand it.

I’d like to share with you a method I use that will crack any unknown 
machine language program astonishingly fast. The method does odd things 
odd ways, but ends up taking one tenth the time and one tenth the effort of 
any usual approach.

We’ll assume you already know and have done some machine language 
programming, and that the target program you want to tear into was written 
by an experienced and more or less rational programmer who didn’t go very far
out of his way to make things rough for you. Let’s see what is involved.

THE TOOLS

First, we’ll have to put together a toolkit. You should have a tractor-feed 
printer along with some heavy white paper, preferably 20-pound. Naturally, 
you will also need a plastic 6502 Programming Card and, of course, the 6502 
Programming Manual. The following listing gives a breakdown of the tools you 
will need to effectively tear apart machine language programs.

You will also want all the usual Apple manuals, along with a copy of the 
Apple Monitor Peeled, and, if you can find one, a copy of the old red Apple 
Book. I am also laboring under the delusion that you will find Don Lancaster’s 
Micro Cookbook, Volumes 1 and 2, of help (SAMS #21828 and #21829). Try to
get an Apple that has access to both an autostart ROM on a switchable plug-in 
card, and the old monitor ROM, without autostart, in socket F8 on the 
mainframe. 

This original ROM has the Trace feature, which was removed to make way 
for the autostart function. More importantly, the "old" ROM gives you the 
absolute control that is needed to stop any program at any time for any reason.
Ads in Computer Shopper offer this ROM for $10.00. 

Note that many newer programs will not let you drop into the monitor 
when you use the autostart ROM. Instead, they adjust the pointers so that they 
return to themselves on a system reset. Thus, an old ROM may be absolutely 
essential to view the target code. The Apple lle may need custom EPROMs.



Tearing Into Machine Language Code 31

MACHINE LANGUAGE
TOOLKIT

 
 ( )  48K Apple II, preferably with
       an old ROM in mainframe
       and a switchable autostart.
       ROM on plug-in card. 

( )  Tractor-feed printer.

( )  Heavy white tractor paper.

( )  6502 Programming Card.

( )  6502 Programming Manual.

( )  All Apple manuals.

( )  Apple monitor peeled book

( )  Apple red book. 

( )  Apple Monitor Peeled book.

( )  Lancaster’s Micro Cookbook,
     Volumes 1 and 2. 

( )  Roll of transparent tape.

( )  Case of page highlighters, 
      in all available colors.

( )  Fine and regular felt-tip pens 
     of matching colors.

( )  Serendipity scratch pad.

( )  What if? quadrille pad.

( )  PAGE HIGHLIGHTERS

( )  A quiet workspace.

( )  The right attitude.

TOOLKIT
ReSOURCES

( )  6502 PROG MANUAL
Rockwell International
Box 3669
Anaheim, CA 92803
Tel: 714-632-0950

( )  6502 PLASTIC CARD
Micro Logic Corp.
Box 174
Hackensack, NJ 07602
Tel: 201-342-6518

( )  APPLE MONITOR PEELED
14349 San Jose Street
Mission Hills, CA 91345
Tel: 213-896-6553

( )  THE MICRO COOKBOOKS
Howard W. Sams & Co., Inc.
4300 West 62nd Street
Indianapolis, IN 46268
Tel: 317-298-5566

( )  PAGE HIGHLIGHTERS
#2500A Major Accent
Sanford Corp.
Bellwood, IL 60104
Tel: 312-547-3272
(SEARS #3KX-3272)

If you really get into machine language programming, this original firmware
ROM is very, very useful. I suspect these ROMs may eventually become rare, 
but with 2716 EPROMs now under $5.00, you can easily clone your own by 
adding a simple CS adaptor to ROM socket F8.

You will want at least a 48K machine, and if there is extra RAM on plug-in 
ards, so much the better. The big advantage to having more RAM than the 
program needs is that you are free to add your own test and debug programs 
co-resident with whatever target program you are tearing apart. You should 
have oth a cassette and at least one disk drive. The cassette can always save any
mage of any part of any program at any time, regardless of whether there is a 
DOS operating system there or not. Images on the tape can be split up and 
relocated as needed, letting you transfer them to disk at your convenience. The 
cassette can also let you introduce very small "test" and "hook" programs into 
he darndest spaces.

Now, off to the office supply. Get yourself a big roll of transparent mending 
tape – the kind you can write on. Then get two cases – yes, cases  of page 
highlighters. Throw away all the extra yellow ones, and get as many different 
colors as you can. Match each page highlighter with both a fine point and a 
regular felt-tip pen of the same color.



Tearing Into Machine Language Code 32

 ACTION

BULK
FILES

START

END

 CODE
MODULE

 STASH

 CODE
MODULE

 STASH

Fig. 3-1. A "typical" machine language program.

Don’t underestimate the importance of these page highlighters. This 
method starts out real stupid like, but you will be astounded when the truth 
and beauty of what is happening leaps out at you halfway through. The        
highlighters are absolutely essential! Make sure these are the fat "see through" 
kind. Get yourself some scratch pads as well. Label the little blank one 
"Serendipity" and the bit quadrille one "What if?".

You also have to have the right attitude, the right workspace, patience, 
persistence, curiosity, perversity, and a very distorted sense of humor for this 
method to work.

It is extremely important that you do everything that follows hands on and 
by yourself. Do not, under any circumstances, let someone else or the  
Apple help you with any tedious or dogwork parts. The method relies 
heavily on your subconscious putting together the big picture and sewing up 
the loose ends. It can only do this if it has access to everything that the tearing 
attack method needs. Do the dull stuff yourself!

THE FIRST RULE

What can we expect to find inside a machine language program? The working
code for sure. But, besides that working code, we need files that go with that 
code. In most longer machine language programs, the files often take up far 
more room than the working code does.

Fig. 3-1 shows your "typical" machine language program, which is just 
about as representative as your " typical" Apple owner or your "typical" rock. 
We see that there are usually two main areas to any larger machine language 
program. These are the action and the bulk files.

 The action is the "real" part of the program that actually does things. The 
action, in turn, is made up of two different types of blocks. These blocks are 
called code modules and stashes .

A code module is a chunk of working machine language code that does 
something. In most programs, most of the modules are subroutines, and are 
called as needed from a very short main program. The advantages of 
subroutines are that they break things down into small and understandable 
chunks and that they can be accessed from several places in the main program 
at once.



Tearing Into Machine Language Code 33

THE Find out the STRUCTURE and the
FLOW of any program, and most
of the code will take care of itself!

GROK THE PROGRAM

A stash is a short file that works directly with a module. The stash often 
follows immediately after the module that uses it. Typical stash entries might be
a short ASCII string, a list of condition codes, or a table of indirect addresses. 
The stash holds values needed by the module that it works with.

The bulk files are usually much longer than the stashes. Bulk files normally 
sit off by themselves and usually follow the action. An example of a bulk file 
might be a high resolution character set. The action controls how and when the
character codes in the bulk file character set go on the screen. In a medium 
sized adventure, the bulk files may contain the map, the script, the objects, the 
responses, the rooms, and anything else unique to one particular story line. 
Only the bulk file has to be changed to change the adventure. The action can 
often stay the same.

In animated games or other programs that use the HIRES features, the bulk 
file may actually be the HIRES screen pages, or combinations of these pages 
with extra file space.

If you are into very fancy machine language programs, the action may, in 
fact, be an interpreter acting as a special use language. The bulk files will then 
contain commands that are run under the action’s command interpretation. 
Zork is a classic example of this type of thing. In Zork, the action is a LISP-like 
interpreter specially written in compact and fast machine language code.

The absolute key secret to tearing into machine language code is ...

So, never, never, never start taking apart machine language code on a line 
by line basis. This is a total waste of time and will take forever. Not to mention 
that it won’t work anyhow. The whole trick is to find out the structure of the 
program. Separate each module of the program and then separate each file 
from everything else. 

You’ll find out there are very powerful hidden indicators that will leap out at
you when you look for them. These indicators will very rapidly break everything
down into simple, obvious, easy-to-understand, and self documenting chunks.

Don’t believe me? Let’s try it and see. We’ll use Apple’s own HRCG High 
Resolution Character Generator as a target program to show you how the 
method works and to illustrate key points. We’ll go over the method in some 
detail. Later, we’ll sum everything up in one checklist. HRCG is available on the 
DOS 3.3 TOOLKIT diskette, available from most dealers. You’ll get the most out
of what follows by actually doing each and every step using your own copy of 
HRCG as we go along. Then try the method on a target program of your own 
choosing.

THE METHOD

Ready? Here we go…

You must be thoroughly familiar with what the program does and how it 
works before you start. Never try to crack a code until after you have used the 
program and really and truly know it.

http://www.tinaja.com/images//key1.jpg


34    Enhancement 3

NEVER assume a program works in 
a certain manner or "has" to do 
something in an obvious way!

GO TO THE HORSE’S WHATEVER

HAVE A LIMITED GOAL

For instance, there’s absolutely no point in taking apart Pyramid of Doom to
try and find the shovel. If you can’t find the shovel, you just aren’t cut out for 
Adventure. But, you just might want to tear into it to find the last treasure you 
need to replace the treasure you have to destroy to get past a certain – uh – 
inconvenience halfway up the pyramid. In no way will your first tearing into 
Adventure tell you the last treasure is in the dressing room, but you’ll learn a lot
about machine language and machine language programs as you go along.

In the case of the HRCG, use the program and thoroughly explore all the 
alternate character fonts, and all the options of each and every mode of 
operation. Know exactly what the program does before you try to tear into it.

One limit to this, though…

Thus, while you are learning how to use the program, and while you may 
think you have some good ideas on how the program works, reserve 
judgement till later. All your good ideas will invariably turn out to be 100% 
wrong.

If you can, watch others use the program and look into their reactions of 
how the program works and what it does. You may be missing something 
totally obvious. Rap with others as much as possible.

Read every scrap of documentation that comes with the program, no matter
how badly written or misdirected it may seem. Always ask around to see if the 
source code exists somewhere. Be sure to look into updates and revisions as 
well. 

It is infinitely easier to start with the original author’s source code and work 
into the program, than to start with an unknown bunch of code and try to infer
what the author had in mind in the first place.

If there is no documentation or if it isn’t helpful, and if the original source 
code isn’t available, keep checking. Perhaps others have torn into part of the 
code or have made modifications on their own that seem to work. Ask around 
at your club, school, computer store, bulletin board, or user group. If anything 
is available that seems to help, try it.

Anything else that can give you a clue to where the software author’s head 
is and where he is coming from will be of great help. Maybe he publishes 
articles and stories. Maybe he has a series of programs out that can be of use. A
few moments of asking in the right places can save you months of time. 

So, always check around.

Any genuinely experienced programmer will admit to this rule…

A long program is NEVER fully
debugged nor fully understood.

Nor can it ever be.

BELIEVE
 IT!☞



Tearing Into Machine Language Code 35

FIND WHERE THE PROGRAM SITS

The entire DEW (Distant Early Warning) defense radar program was never 
tested. Not only was it never tested, the DEW program was so hopelessly 
complex that there was no possible way it could have been fully tested. Even if 
some test method existed, the odds of it passing any test was infinitely small.

A good and clean program simply has most of its remaining bugs fairly well 
hidden and fairly well out of the mainstream. This only happens after the ninth 
or tenth revision. But rest assured, there are definitely still bugs there, lying in 
"deep cover" and patiently waiting.

What this says is that the original programmer did not fully understand nor 
fully debug his program. If he says he has, he is either lying or else hopelessly 
naive. Now, if he didn’t understand his own program, why should you?

Thus, a goal "to completely understand" some program is not only 
unreasonable; it is patently ridiculous. Instead, set yourself a reasonable and 
realistic goal for your first trip of tearing into machine code. Then, after you 
have set this realistic goal, simplify it till it is trivial. Then, simplify that. Then, 
think up some really dumb test of a small part of what is left. Something any 
idiot could hack. Maybe, just maybe, you will then be in the ball park.

For the HRCG, let’s use the goal of answering "Where are the scroll hooks?" 
The HRCG obviously has some sort of scroll in it, since it moves characters up 
the screen. The scroll on the version I received is abrupt and chunky, so it can 
obviously be improved. Or can it?

Maybe it’s not so obvious. Why would such a good program have such an 
ugly scroll? These are name-brand people working on this and chances are they
fumed and fretted over things quite a bit. Better stick with our original goal of 
finding the scroll hooks.

When you set your limited goal, don’t become obsessed with it. The tearing
method works by separating the known from the unknown as you go through 
the code. The method we will use demands a lot of apparently useless side 
trips. Concentrate only on your goal and you may never get there.

Before we can go on with our tearing attack method, we have to take time 
out for a rather long, but most essential side trip. Ready? Here we go…

Where is the machine language program likely to sit? A glib answer is some-
where between $0000 and $FFFF, unless they are using memory mapping to go
beyond 64K or are swapping things back and forth to the disk, or are using 
auxiliary memory on the Apple IIe. This assumes, of course. that the program is 
not self-modifying so that it changes itself through time.

Figs. 3-2 through 3-6 show us some places we can put a program. We can 
divide these into low RAM, high RAM and wherever. Let’s check these in more 
detail.

Low RAM
 

Low RAM is heavily used. As Fig. 3-2 shows us, low RAM goes from hex 
$0000 through $07FF, or memory pages Zero through Seven.

Page Zero is very valuable real estate for two reasons. The first is the 6502 
has a page Zero addressing mode that is much shorter and faster than most      



36    Enhancement 3

Fig. 3-2. Low RAM memory map.

PAGES FOUR THROUGH SEVEN ARE THE TEXT AND LORES PAGE 
ONE. THERE ARE ALSO 64 LOCATIONS IN 8 GROUPS OF 8 EACH 
INTENDED FOR I/O USE.

PAGE THREE HOLDS THE DOS POINTERS AND MONITOR VECTORS 
AT ITS HIGH END. THE BOTTOM OF THIS PAGE IS A POPULAR 
PLACE TO PUT PROTECTED MACHINE LANGUAGE CODE.

PAGE TWO IS THE KEYBOARD INPUT BUFFER AND WORKS FROM 
THE BOTTOM UP. SHORT PROGRAMS CAN BE PUT AT THE TOP OF 
THIS PAGE, BUT A DANGER EXISTS OF A LONG KEYBOARD ENTRY 
PLOWING THE PROGRAM.

PAGE ONE IS THE STACK AND WORKS FROM THE TOP DOWN. 
SHORT PROGRAMS CAN BE PUT AT THE BOTTOM OF THIS PAGE, 
BUT A DUAL DANGER EXISTS OF YOUR PROGRAM PLOWING THE 
STACK, AND VICE VERSA.

PAGE ZERO HOLDS CALCULATED ADDRESSES. ALL VALUES PASSED 
BETWEEN PROGRAMS, AND MOST SYSTEM VARIABLES. THERE IS 
USUALLY NO ROOM FOR ACTUAL PROGRAM CODE, ALTHOUGH 
MOST PROGRAMS DO USE THESE LOCATIONS FOR STORAGE.

POINTERS
AND

VECTORS

STACK 

KEY-IN
BUFFER

SYSTEM
VECTORS

TEXT AND
LORES
PAGE 1

$0000

$0100

$0200

$0300

$0400

$07FF

Practically all programs need a few locations 
on page Zero. Some of these are used to pass 
values to the monitor, to BASIC, or elsewhere. 

Other page Zero locations can be used to hold 
calculated addresses for the indirect modes.    

indirect indexed and indexed indirect demand pairs of address locations on 
page Zero.

The Apple book shows how practically all of page Zero is used up one way 
or another by the monitor, the DOS, or either BASIC. For instance, the locations
for the keyboard entry hooks and the print output hooks are stored as 
addresses on page Zero, as are the screen formatting controls that set the 
height and width of the display. Other important page Zero locations convert 
line numbers into the base addresses needed to hit a certain line of video.

We will see a list of these important page Zero locations shortly. The point 
here is …

Thus, page Zero real estate is far too costly for program code. Instead, the 
available locations are used to pass values back and forth between the system 
and the target program, and to hold calculated address values.

Sometimes a target program will reassign page Zero locations for its own 
use. For instance, if the program is fully in machine language, it could borrow   



Tearing Into Machine Language Code 37

many of the locations "reserved" for Applesoft or Integer BASIC, since these 
locations will never be used. Monitor locations that serve oddball purposes can 
also be "redefined" provided that the monitor feature is never used.

Occasionally a very short machine language sequence can be crammed into 
low values on page Zero, as was done with the original tone subroutine in the 
old red book. Even this got you in trouble when you switched to Applesoft. 
Putting programs on page Zero is dangerous and dumb, but it can be done.

Another dangerous place to put programs is on page One. Page One is 
intended to be used for the stack. The 6502 uses a single stack that starts at 
location $01FF and builds down. This stack is shared by the monitor, by the 
operating system, and the program itself. Important uses of the stack are to 
store the return address of a subroutine call and both return address and 
processor status on an interrupt. Advanced programmers might also use the 
stack as a temporary stash of a value or two, or might even manipulate the 
stack to alter the program flow.

The stack rarely gets below $0180 in normal use. It is usually possible to put
a very short machine language program in locations $0100 through $017F. 
This is dangerous, since the program can plow the stack and vice versa, if either
gets too long.

Page Two is normally used as a keyboard buffer. Key entries start at $0200 
and build their way up. The average number of keystrokes stored is fairly low, 
and you can sometimes cram a small machine language program on the top of 
this page. Once again, you are asking for trouble since too long a keyboard 
entry will plow your program.

One sneaky and ugly trick that a programmer can pull is to put some 
relocation or protection code starting at $0200. This code must be used before 
any keys are hit, and is thus very difficult to read. The code will, of course, get 
destroyed as soon as any keys are entered.

Most of page Three is available to the machine language programmer. 
There are some DOS jumps and system vectors on the high end of this page. 
The vectors control the reset, interrupt, autostart return, breakpoints, Applesoft 
"&", and nonmaskable interrupt jumps.

Thus, you are free to use the first 150 or so locations on page Three for your
machine language program. This turns out to be a favorite stash for short 
programs, since this area is automatically protected from either BASIC.

Unfortunately, everybody and his brother crams just about everything they 
can think of in here, and you can often have two parts of a program, each of 
which needs a different machine language code, both trying to use this space. 
For instance, a printer driver may be placed here by one program and a screen 
dump by another. Try to combine the programs, and you have a turf fight.

If you have a longer machine language sequence, you can sometimes 
combine the top half of page Two continuously with the bottom half of page 
Three. Again, you have to be careful not to get bumped by a long keyboard 
entry and to be sure you don’t, in turn, bump into a DOS hook or other 
pointer. Memory pages Four through Seven are the page One text screen and 
page One LORES screen. The only difference between traditional text and 
LORES is that, in text, the stored code goes through a hardware character 
generator while, in LORES, the same code is directly bit-by-bit converted into a 
stacked pair of colored blocks.

It seems kinda dumb to try and put machine language code onto the 
display pages. First, you will probably see it and it will look ugly. Secondly, any 
scrolling or screen clearing will destroy the code. Nonetheless, in a program 
that does all its work in HIRES, this space is theoretically available.



38    Enhancement 3

There are some sneaky RAM locations stashed here and there on pages Four 
through Seven that are not displayed and are not erased by a properly done 
scroll or clear. There are 64 of these locations. These are normally intended for 
use by the I/O slots and have intended assignments.

If you really want to be tricky, you can use these spaces any way you want 
to, provided there is no I/O access to the same location. This is one of 
the better hiding places for disk verification codes and other sneaky stuff.

Summing our low RAM up, you have a few locations on page Zero available 
to you that are usable to pass values to the monitor or to save calculated 
addresses. The low end of the page One stack and the high end of the page 
Two keyboard buffer can be used for short programs or subroutines, but use of 
these areas can be dangerous. Most of the bottom of page Three can be used 
for a machine language program. This space is very popular but it can cause 
conflicts between programs. Finally, pages Four through Seven are the page 
One text and LORES display and are not normally available for program 
storage, except for some 64 hidden locations that are normally reserved for 
input and output.

High RAM

As Fig. 3-3 shows us, the high RAM runs from $0800 up through the top of 
installed RAM. In a 48K machine, high RAM goes from $0800 through $BFFF. 
This area holds the usual locations where longer programs are placed.

How much of high RAM is available for your use? It all depends on what 
other features you are going to run along with your program, and what 
minimum size Apple you want the program to run on.

We will assume that the target program needs a full 48K. Extra RAM is now 
so cheap that practically all Apples either arrive with full RAM or are soon filled. 
With those new 64K RAM cards, most Apples will soon have bunches of extra 
memory on top of what used to be "fulL" A machine with a mere 48K of RAM 
will soon be at poverty level.

At any rate, if you decide to use text page Two or LORES page Two, 
locations $0800 through $O8FF have to be set aside and protected. Use of this 
text page is relatively rare.

If you want to use HIRES page One for graphics, sprite animation, or 
multifont text displays, then locations $2000 through $3FFF have to be 
reserved. Use HIRES page Two and you will also have to reserve locations $4000
through $5FFF. These locations hold an image of what goes on the screen and, 
thus, are not available for both display and program use at the same time. You 
will sometimes use both pages at once for effective and fast animation or to 
double graphics resolution.

While there are a few unused RAM locations on these HIRES pages, these 
locations get plowed every screen reset or color change. Thus, they are not 
safely usable except as a very temporary stash.

We will note in passing that if the HIRES pages are not used, and you put 
code in this area, you can actually watch the code executing by switching to 
HIRES while the program is in action. This can be a very powerful snooping 
tool. Watching a program run its own code gives you a new window into what 
is happening. You can also watch code working on LORES page Two, but this is
a much smaller area and not nearly as useful.

If you are using standard DOS, the space from $9600 through $BFFF is 
normally saved for the DOS system. You can sometimes "borrow" a DOS file or 
two and stuff a short machine language sequence into a small portion here.



Tearing Into Machine Language Code 39

THE DOS 3.3 OPERATING SYSTEM SITS AT THE TOP OF HIGH RAM. 
SMALL SMALL WORKING PROGRAMS CAN BE STORED HERE IN 
UNUSED DOS FILE AREAS. THIS SPACE MAY BE FREED UP BY GOING
TO A SMALL CUSTOM DOS OR BY MOVING DOS ONTO A RAM 
CARD.

AVAILABLE PROGRAM SPACE.

HIRES PAGE TWO IS USED FOR ANIMATION AND GAMES WHERE 
ONE PAGE IS DISPLAYED WHILETHE OTHER IS MODIFIED. MUST BE 
PROTECTED WHEN USED.

HIRES PAGE ONE RESIDES HERE AND IS USED FOR BOTH COLOR 
GRAPHICS AND MULTIFONT TEXT DISPLAYS. MUST BE PROTECTED 
WHEN USED.

AVAILABLE PROGRAM SPACE.

LORES AND TEXT PAGE TWO. VERY RARELY USED.

LORES
PAGE 2

HIRES 
PAGE 1 

HIRES
PAGE 2

DOS 3.3

$0800

$0C00

$2000

$4000

$6000

$9600

$BFFF

Fig. 3-3. High RAM memory map.

A lot of programs provide their own smaller and simplified versions of DOS. 
This gives a measure of copy protection and makes more room.

Thus, a machine language program could go from $0800 to $BFFF. Subtract
the range $9600 through $BFFF for DOS at the top, the range $4000-$SFFF for 
HIRES page Two, the range $2000-$3FFF for HIRES page One, and, if used, the 
range $0800 through $08FF at the bottom for text and LORES page Two.

Many machine language programs start at $0800 and work their way 
upwards as needed. If they are about to crash into the HIRES pages, they skip 
above HIRES and continue as far as they have to.

Combining Programs

Things get much more complicated if machine language subroutines have 
to interact with Integer or Applesoft BASIC programs. Each BASIC language 
works differently and needs a different way to "protect" an area for its machine 
language routines. The protection will be needed to keep the BASIC from 
overwriting the machine code and vice versa. Fig. 3-4 shows us more detail.

In Integer BASIC, HIMEM is a high-memory pointer that points to the end of
the Integer program. The program starts at HIMEM and builds its way 
downward. Every new program line gets put in its place, automatically moving 
everything else down and leaving you with the end of the program listing at 
HIMEM. String variables start at the low-memory pointer LOMEM and build 
their way upwards.

The usual way to tie a machine language program into Integer BASIC is to 
start the machine language sequence at $0800 and set LOMEM to at least one 
space above the end of the machine language code. LOMEM can be set as the  



40    Enhancement 3

TEXT 1

MACHINE
CODE

INTEGER
BASIC

PROGRAM

DOS

$0800

????  

$9600

LOMEM SET
TO TOP OF
MACHINE
CODE + 1

NORMAL
HIMEM

(A)  Integer Basic, no HIRES

TEXT 1

MACHINE
CODE

HIRES
PAGE 1

INTEGER
BASIC

PROGRAM

DOS

$0800

????  
$2000

$4000

$9600

LOMEM SET
TO $4000

NORMAL
HIMEM

(B)  Integer Basic using HIRES 1

TEXT 1

APPLESOFT
PROGRAM

LINES

APPLESOFT
STRINGS AND

VARIABLES

MACHINE
CODE

DOS

$0800

????  

????  

$9600

START OF
PROGRAM

POINTER SET
TO $0800

LOMEM

HIMEM SET
TO BOTTOM
OF MACHINE

CODE -1

(C)  Applesoft Basic, no  HIRES 1

TEXT 1

APPLESOFT
PROGRAM

LINES

HIRES
PAGE 1

APPLESOFT
STRINGS AND

VARIABLES

MACHINE
CODE

DOS

$0800

????  

$2000

$4000

????  

$9600

START OF
PROGRAM

POINTER SET
TO $0800

LOMEM SET
TO $4000

HIMEM SET
TO BOTTOM
OF MACHINE

CODE -1

(C)  Applesoft Basic, using  HIRES 1

Fig. 3-4. Usual ways of combining BASIC and machine language programs. Note that
               machine code goes above Applesoft or below Integer.                                                         

first instruction of an Integer BASIC program. It takes an "illegal" command, 
butit is easily done with a single POKE command. Should you also be using the 
HIRES pages, you still start your machine language program at $0800, but        



Tearing Into Machine Language Code 41

you would most likely reset your LOMEM pointer to one location above the 
highest HIRES screen location needed. This is shown in Fig. 3-4B.

Applesoft does things quite differently than Integer Basic. The Applesoft 
programs start at a start-of-program pointer TXTAB and build their way up, 
while the string variables start at HIMEM and work down.

It is not normally possible to change the start-of-program pointer during a 
program since the program is already in memory and not movable. While you 
can put a machine language program below this pointer, the only way to do it 
is to change the start pointer before you load your final Applesoft program.

Note that this start-of-program pointer is not LOMEM! It is called TXTAB 
and sits at $0067 (low) and $0068 (high), LOMEM in Applesoft is actually in 
the middle. LOMEM points to the beginning of the variable space and often 
marks the end of the program lines.

You will usually put your machine language program above Applesoft by 
setting HIMEM before you run your Applesoft program. HIMEM may also be set
early in the program. Details on this are shown in Fig. 3-4C.

For more program room, you also have the option of setting HIMEM to one 
less than the start of your machine language program, and LOMEM to one 
more than the highest HIRES location in use. The start-of-program pointer 
remains at $0800. This lets you put program lines from $0800 up through the 
start of the HI RES page, and place the strings and variables from the top of the
HIRES space to the bottom of your code. This is shown in Fig. 3-40.

So, we see that machine language programs running with Applesoft 
normally go above HIMEM, while machine language programs running with 
Integer BASIC normally go below LOMEM.

You can also play pointer games to tow a short machine language sequence
along inside an Integer BASIC or Applesoft program. One method is to put the 
machine language stuff between two BASIC statements. The parsed code on 
the first statement is then altered so it jumps over the machine language part 
to get to the next expected instruction. These pointer schemes are tricky and 
get hairy if you make any changes, but some authors use them to "protect" 
their programs or "hide" their fast code. An advantage of this is you can use 
one cassette loading to enter both machine and BASIC codings. With a disk it is
simpler to let one program load the other one with a second disk command.

Mainframe RAM usually only goes up to 48K. What is in the other 16K of 
our 64K Apple? Figs. 3-5 and 3-6 complete the picture for us.

There are sixteen pages located from $COOO through $CFFF that are 
reserved for I/O. As Fig. 3-5 shows, the bottom half page ($COOO to $C07F) is
used for all the screen switches, the push buttons, the paddles, speaker, 
cassette, keyboard entry, and the keyboard strobe. The next half page 
($C080-COFF) is used to pass address locations to each slot. There are sixteen 
locations reserved for each slot one through seven.

Above that, we see seven location blocks that are one page of 256 words 
each. These usually will hold the "control" PROM or ROM for a given card and 
are addressed as shown. A final 2K space is reserved from $C800 through $CFFF
that can be used by any I/O slot that wants it, as long as all the slots take turns,
and only one slot is active at a time.

There is usually very little RAM in the I/O space. These locations are 
important, though, for they are how we control the on-board things like the 
screen modes, speaker, paddles, keyboard, and so on. They are also the way we
interact with any working card. If a plug-in card is involved with the code you 
want to tear into, you will have to pin down exactly what codes goes where.



42    Enhancement 3

BUILT IN I/O

CARD I/O

SLOT 1
ROM

SLOT 2
ROM

SLOT 3
ROM

SLOT 4
ROM

SLOT 5
ROM

SLOT 6
ROM

SLOT 7
ROM

2K ROM
OR RAM

USABLE BY
ANY SLOT,
PROVIDED
THEY TAKE

TURNS

$C000

$C080

$C100

$C200

$C300

$C400

$C500

$C600

$C700

$C800

$CFFF

Fig. 3-5. I/0 map.

If we now turn to the uppermost 12K of address space on the Apple, we see
that there are six ROM sockets on the Apple mainframe. Each socket can hold a
2Kx8 bytewide ROM or RAM. Fig. 3-6 shows us the usual setup for Integer 
BASIC or Applesoft machines. A 2K monitor ROM needs the top or $F8 socket.

There are two possible monitors, the old or absolute reset one, and the 
newer autostart one.

Continuing down our ROM sockets, Applesoft uses the bottom five, while 
Integer BASIC uses the middle three, along with an optional programmer’s aide
that fits in the bottommost or "DO" socket. The uppermost Integer ROM at "F0"
also holds the extremely useful mini-assembler code, along with the old floating
point package, and the "Sweet 16" 16-bit machine pseudocode. None of these 
machine language test and debug features are available in the Applesoft ROMs.

This area is all ROM and cannot normally be written to. But the locations in 
this area are useful to interact with the monitor or either BASIC language.

The entire top of the machine can be bypassed by any plug-in card through
the INH line. This lets a plug in ROM card give you the choice of either BASIC, 
or it can let a RAM card do darn near anything it wants to, including running 
other languages, holding DOS, or giving you extra RAM space.



Tearing Into Machine Language Code 43

$D000

$D600

$E000

$F400

$F800

$FFFF

PROGRAM
AIDE

UNUSED

INTEGER
BASIC

INTERPRETER

ASSEMBLER

MONITOR

(A) Integer BASIC

$D000

$F800

$FFFF

APPLESOFT
BASIC

INTERPRETER

MONITOR

(B) Applesoft BASIC

You cannot tear a program 
apart that is not already in 
the machine and capable of 
running!

At any given instance, any 
valid program MUST have 
everything it needs in the 
machine so it can continue!

OBVIOUSLY…

THEN AGAIN…

Fig. 3-6. The high ROM maps.
A plug-in ROM or RAM card
can deactivate these and
substitute its own code.

Note that many software programs placed on RAM cards may deny you ever
gaining access to the monitor ROM in mainframe socket $F8. This can make 
intercepting a running program rather tricky.

Many machine language programs will start at $0800 and work their way 
upwards, but you can expect any program to end up just about anywhere, 
depending on what other resources of the Apple are being tapped.

One ultra sneaky trick is to start your machine code at the bottom of the 
keyboard buffer at $0200, with a jump, and then run up through everything in 
between there and the end of your machine language program. 

This neatly hides the "real" starting address of your program and also gives 
you an attractive page One text or LORES display while the rest of the program 
is loading. You must, of course, find out where the program is before you can 
attack it.

Let’s start with a very obvious fact… 

What this says is that any program that uses a disk may not have that part 
of the program in which you are interested sitting in the machine at any given 
time. This rule also says that any program must be placed in the machine 
exactly where it normally will run, and it must be started off on exactly the first 
instruction location.

So, be sure you have that part of the program that you want to analyze in 
the machine when you attack it. The other side of the coin has the good 
news… 

So, if there is no disk whirring between where you are and what you want 
to analyze, it all has to be there in the Apple somewhere, somehow. But, where
is where? 



44    Enhancement 3

FINDING PROGRAM
LOCATIONS

( ) Read the instructions.

( ) Ask DOS to tell you.

( ) Infer from use.

( ) Empty, then fill the machine.

You must pin down all of the exact locations a target program uses before 
you can tear into it. There are at least four good ways to do this…

The first and most obvious way is to see if the author did not tell you 
somewhere just exactly where the program sits. For instance, the loading 
instructions for the Adam’s Adventures 0-12 tell you these go from $OBOO 
through $57FF and that the starting point is $OBOO. Being told ahead of time 
where the program starts and resides is the easiest and best method, so always 
look around carefully for loading information.

The second way to find where a machine language program goes is to let 
DOS tell you. On a 4BK machine BLOADed under standard DOS 3.3, the 
starting address ends up in $AA72 (low) and $AA73 (high). The program length
is stashed in $AA60 (low) and $AA61 (high). After loading, you reset, do a call 
-151 to get into the monitor, and, then, inspect these locations. The old 
monitor ROM might be needed to force reset back into the monitor.

DOS can also give you some hints. If you can read the catalog, the type of 
file and its length should be obvious. Even listening to the number of track 
clicks during a load should tell you something about how long the program is 
and which disk tracks it lies on. Take off the disk drive cover, and you can 
actually watch the drive move from track to track. With some practice, you will 
be surprised how much this can tell you. 

This process, when formalized, is called boot tracing. where the program 
sits from what it has to do and what it has to interact with.

Our HRCG gives us a good example here. We can’t directly find where 
HRCG sits since it is an "R", or relocatable, rather than a "B", or binary file. But, 
the Applesoft Toolkit book tells us HRCG fits under DOS and moves HIMEM 
down to protect itself and its alternate character fonts from Applesoft incursion.

There’s a simple and easy-to-use BASIC program called LOADHRCG that 
comes with the HRCG program. In it is a variable called ADRS which equals 
HIMEM. Run this one with no alternate character sets, and we see that ADRS 
ends up as $BDFE. Run it with one alternate character set, and HIMEM moves 
three pages lower to $BAFE. Two alternate sets and HIMEM drops three more 
pages lower to $B7FE, and so on. This special example is shown in Fig. 3-7.

So, by inference, HRCG sits from $BDFF through $95FF. This will include the
HRCG action and the bulk file used for character set Zero, the default ASCII set. 
Other character sets build downward three pages at a time, with the 
lowestnumbered set on the bottom and the highest set always at the top, again
as shown in Fig. 3-7.

You can find this out on your own by carefully studying a printout of the 
LOADHRCG Applesoft program and then doing loadings and finding the value 
of ADDR, otherwise known as HIMEM. The same study should show you how 
the alternate character sets are filled in.



Tearing Into Machine Language Code 45

USER RAM

ALT SET 1

ALT SET 2

ALT SET 3

HRCG

DOS

$84FF

$87FF
$8AFF

$8DFF

$9600

Fig. 3-7. Location of 48K Apple HRCG program and alternate character sets.

EMPTY  THE  MACHINE 

The final method of pinning down a large program works even if all other 
methods fail, and should be used as a check even if you are absolutely sure 
where the target program sits. This final method is a sledgehammer. You empty
the machine completely, and then refill it only with your target program . 
Then, you casually flip through memory, a page at a time, untill you find the 
program. The next tearing step gives us full details on this…

We have now seen how an Apple’s memory is arranged and the methods 
we need to use to find where a program sits. Let us now go back to the 
mainstream of our tearing attack.

You can use any method you like to pinpoint exactly where thyour target 
program lies. Try reading instruction s, and then try letting DOS tell you. Then, 
try inference from what the program does and how it interacts with the Apple. 
If none of that works …

There is nothing more infuriating than to find out you are really analyzing 
interpreted BASIC code left over from last Tuesday’s 4 AM breakout game, 
instead of your target program.

To prevent this from happening, you will want to completely and absolutely
empty your machine of everything old and unneeded before you begin. There 
are two very good reasons for this. One is that you won’t be wasting your time 
analyzing something that is not part of your target program. The second is that
an empty machine that has just been filled is one sure way to find or verify the 
location of your target program.

You should always clear your Apple of old stuff before attacking a target 
program. But, how do you empty a machine?

Even a just repowered Apple will come up with random garbage in most all 
of the RAM locations. The trick is to load each and every memory location with 
an obvious value that is very easy to spot, particularly when it is scrolling by. 
The value $00 is dangerous since it is also a Break command, and it is hard to 
read on the fly. I use the value $11 instead. On a listing, you will get an 
unmistakable string of continuous lines on anything that is still empty . This 
pattern is readable even during an abrupt scroll.

The following steps show us how to empty your Apple. It’ s very easy to do 
from the monitor. You put a $11 somewhere and, then, move it as far up in 
memory as you want, recopying it over and over again. If you are using DOS 
3.3, you should empty locations $0220 through $03CE, and $0800 through     



46    Enhancement 3

LIST THE PROGRAM

A. To empty user RAM except for DOS:

0800: 11 < cr >                 
0801 < 0800.8FFEM < cr >

B. To empty all user RAM:

0800: 11 < cr >                  
0801 < 0800.8FFEM < cr >>

C. To empty most of pages $02 and $03:

0220: 11 < cr >                 
0221 < 0220.03CEM < cr >

$95FE. Be sure to empty your machine after booting DOS. Do things the other 
way around and the DOS boot code will return to haunt you.

If you are not using DOS, then you can go ahead and empty $9600 through
$BFFF as well. You might also like to empty page One from $0100 to $0180. 
But, don’t try to empty page Zero, the top half of page One, the first few 
locations of page Two, the top of page Three, or anything above $COOO. 
Erasing any of these locations will bomb the machine or cause other problems.

To empty your Apple, put an "empty" symbol in some location. Then, use 
the monitor to move a block of memory-starting at that location and moving 
up by one.

To get into the monitor from either BASIC language, do a CALL -151. Once 
again, do not try to empty page Zero, the top half of page One, the first few 
locations on page Two, page Three above $03CF, or anything above $COOO.

Some target programs will try to prevent you from ever going into the 
monitor. Switch to the old (nonautostart) monitor ROM if this happens.

When your machine is empty, snoop around everywhere to see what it looks
like. From the monitor, do a 0800.BFFF < cr > and watch the "elevens" go 
streaming by.

You’ll next want to load and verify the locations of the HRCG program from 
$8DFF through $95FF. Try adding alternate character sets, one at a time, and 
see what happens.

Always start with an empty machine and always return to one anytime you 
get confused as to what is happening.

After you have emptied the machine and loaded your target program, go 
ahead and list it. Make two copies on the heaviest white tractor paper you can 
find. You list a program from the monitor by typing the starting address and, 
then, the character "L" eighty times and, then, a < cr > . Each L command gets 
you twenty lines of disassembled code. Use too few L’s and you will have to 
retype them in the middle of your listing. Too many and you simply hit RESET 
when you get to the end of the target program.



Tearing Into Machine Language Code 47

( ) Lots of question marks.
( ) Break commands ($00).
( ) Dumb repetition.
( ) Rare commands in odd mixes.

SEPARATE THE ACTION FROM BULK FILES

Keep three clean white pages before and after the listing. Do NOT take the 
listing sheets apart. Instead, carefully reinforce every tear line, tractor holes and 
all, with transparent tape. Actually, you would be best off having a welder 
transcribe a copy of the listing by burning it into a quarter-inch steel plate for 
you.

No matter how rugged you make it, it won’t be enough. The object here is 
to keep the listing in one piece and legible after handling and rehandling over 
and over again. 

So, don’t spare the tape.

Label the top sheet with the name of the target program and the date you 
started attacking it. Don’t forget the year and version number. The second copy
is a backup to be used when the first one falls apart or gets totally illegible.

You will also want to create two copies of a hex dump of your target 
program. For HRCG, you get in the monitor, type 8DFF.95FF, reach over and 
move the printer paper up a space or two, and, then, hit < cr> . Incidentally, on
both the listings and the hex dump, use the printer’s skip-over-margin feature if
you have it available.

Most of our tearing apart will be done on the listing sheets. The hex dump 
sheets will sometimes show us a pattern in a file or will give us some other 
pictorial information or other visual clues that can be of enormous help. Yes, 
you might have to list and hex dump the entire machine for really fancy 
programs, and this will take bunches of paper and, maybe a ribbon or two. But 
this isn’t nearly as bad as it seems, and it must be done if you are to crack the 
program.

Well, we finally have completed our preliminaries. It sure took a long time to
get here. Now the fun starts. Ready?

Carefully look at your listing. Not for detail, but for overall vibes. Anytime 
you think something may be helpful, jot it down on one or another of the pads.

But, once again, do not jump to conclusions and do not attempt to analyze 
any part of the code in detail. At this stage in the game, we are interested only 
in the flow and pattern of the big picture. The first thing we want to do is 
isolate the action so that we can work with it separately. As you go along, you 
will gain a feel for what I call "rational" code.

For rational code has a flow to it, with reasonable commands used in 
reasonable ways. At this point, we don’t want to pass judgement nor force 
conclusions as to what is which. But see if you can’t separate obviously 
"rational" code from everything else.

Now, we told our lister to lis, assuming that it would be handling working 
machine language code. The lister will also try to list a file, or random garbage, 
as if it was rational code. So, we can expect lots of visual clues as to whether 
we are working on real code or file values. Here are some sure signs… 



48    Enhancement 3

$8DFF

$92FF

$95FF

ACTION

BULK
FILE

HOLDS DOT PATTERNS
FOR THE DEFAULT
CHARACTER SET

HOLDS CODE MODULES
ACTION AND STASHES 
USED BY HRCG

Fig. 3-8. Separating the action from the bulk files.

The question mark means that the lister thought it found an illegal op code,
something that the 6502 micro does not know how to use. There are times and
places where you will get an occasional question mark in the middle of working
and valid code. This has to do with the "lister" getting out of whack on the first 
instruction, or it may (rarely) be a value or two a programmer has put between 
working code segments. But, lots of question marks are a good sign of a file.

The break $00 command is enigmatic. BRK is a debugging tool and one of 
the most powerful the 6502 microprocessor has available. But, a break 
command is only rarely allowed to appear in working code as a valid 
instruction! Why? Because the break command immediately forces a debugging
interrupt, or else, it might rarely be used for an error trap or a restart.

Dumb repetition is another clue. Say you push the processor status on the 
stack with a PHP command. That’s fine. But, why do it fifteen times in a row? 
That is irrational. As you go along, you will get a feel for what is rational code.

Do it. Start through ythe HRCG listing. There’s a few question marks at the 
beginning and a few breaks, but mostly it is rational. Chances are these are 
stashes that go with the code modules. As you go along, you get lots of 
rational code. Continue. Page after page of rational code.

Suddenly, around $92DF, things get weird and stay that way, all the way to 
the end. Lots of question marks, breaks, and dumb code.

Let’s guess and say that our bulk file goes from $92FF to $95FF. It looks like 
there’s some garbage, or a stash below $92FF, but let’s speculate. Three pages 
ring a bell. Check the HRCG Manual and you’ll find it takes three pages for an a
character set. Apparently, we have the default character set here. We should 
NOT jump to conclusions this early in the game, nor should we try a detailed 
analysis of the bulk files, but maybe just a little peek won’t hurt…

Check the hex dump for these pages. See the pattern? Every eighth row 
almost, but not always, is all zeros. Except for the lower case g, p, and a few 
other exceptions, most characters would leave one dot row out of eight blank.

Strong evidence. But, not strong enough. Later, we will tear into this bulk 
file and verify exactly what it does. We will also find out where it starts. For 
now, draw a bright red line across the listing page between $92FD and $92FF. 
Label the area below "BULK FILE." On your serendipity pad, sketch something 
like Fig. 3-8, that shows an HRCG action from $8DFF through $92FE and a bulk
file from $92FF through $95FF.

Don’t worry just yet about the extra question marks we have above the bulk
file. Somehow, these look "different" from the code in the bulk file. As you gain 
practice, any slight differences leap out at you. But, our goal for here and         



Tearing Into Machine Language Code 49

$8E1E-      60              RTS

PAINT ALL SUBROUTINE RETURNS GREEN

PAINT ALL SUBROUTINE CALLS ORANGE

now, is only to separate the action from the bulk files, nothing more. In HRCG, 
this roughly cuts our task in half. In other programs, the bulk files may be the 
lion’s share of the code.

No matter what code you write or how secretive you are, there is an 
Achille’s heel you have to contend with. This is the 60 RTS or Return From 
Subroutine command. RTS is our first and foremost attack point into unknown 
code. It is the chink in the armor, the pry point, the skeleton key. Let’s split off 
the subroutines and watch how fast the code breaks up.

Go through your code and at every "rational" place that you find a 60 RTS, 
use a highliter to put a green bar through all of the code except the address.

Something like this …  

Do this for every 60 RTS you see in the action. If you aren’t sure whether 
the 60 is rational or not, then color only the RTS green, rather than the entire 
line. Generally, question marks below a 60 RTS are allowed; those close above 
are suspect.

If you do this on HRCG, you should end up with 35 "definites" that are 
greenlined all the way across, and one "maybe" located at $8F85 that is only 
boxed.

Do not try to analyze any of this code yet. We will let the code analyze itself
later on.

We have just identified the end of every subroutine in the program. 

Since properly written machine language programs will end up mostly 
subroutines, we already have nearly all our code modules isolated! 

All that with several strokes of a fuzzy green page highliter!

Now, things start to get interesting…   

Next, get yourself an orange page highliter and go through the action. 
Identify every rational JSR and its address in orange.

Do this two ways. If the JSR goes to a local address inside the action, paint 
only the JSR and the address. If the JSR goes out-of-range to some other part of 
the memory, paint the JSR, the address, and one inch more, and "half" an 
arrowhead.



50    Enhancement 3

$8E0E-      20 1F 8E              JSR 8E1F

$8E16-      20 ED FD             JSR FDED

$8E1F-      A9 74              LDA #$74

Like so for a local JSR…

This subroutine call is in range, so we color only the JSR and the $8ElF. For 
an out-of-range or "long distance" call, do it like this…   

You use the arrowhead to identify an out-of-range call. Should you have a 
questionable or irrational subroutine call, color only the JSR for now. (The 
reason for half an arrow is that you might get two arrows side-by-side. If this 
happens, make one point "up" and the other "down.")

Orange is a nice color, so let’s use it some more. For each local JSR call, find 
out where the JSR goes, and color the start of that line orange. Go only through
the address, starting a quarter inch to the left. For instance, at $8E0E, you have 
a local call of JSR $8ElF. Go to the start of line 8ElF and do this…     

This tells us that we are starting on some "live" and rational code, and that 
what follows will be a useful and worthwhile worthwhile subroutine. Once 
again, we do not want to analyze any code just yet.   



Tearing Into Machine Language Code 51

COUT (Output Character) 1$8E16-      20 ED FD              JSR FDED

Two fine points. If there is already an orange stripe here, or one of another 
color, just put an orange "ear" or small black dot on the existing stripe. Each 
new time this happens, add a new black dot.

This will give you a "popularity poll" of your subroutines. We probably won’t
use this voting result for our HRCG analysis, but in a large program, the 
popularity of a subroutine can tell you how important that sub is and how 
much effort you should spend in understanding it.

A second possibility is that the JSR seems to go to the middle of an op code,
instead of the start. The most likely reason for this is that the lister got off on 
the wrong foot. See the "WILL THE REAL LISTING PLEASE JUMP OUT" sidebar at 
the end for details. What happens is that the lister starts off with a value or two 
in a file and assumes it is a valid part of a program that can be disassembled. 
Op codes take one, two, or three bytes. If the first byte is wrong, the listing will
also be wrong. If you get a "JSR to the middle of… ", try relisting from the JSR 
address to see if you get rational code. This will help clarify the boundaries 
between stashes and code. We will see an example of this later.

Should your JSR want to go to your bulk file, you guessed wrong! Either the 
bulk file has a code module in it, or else your JSR really is a random "20" in a 
stash somewhere. Pay careful attention to loose ends like this, for pinning down
exact code and file beginning addresses can save you hours of frustration.

After all of your local subroutines are taken care of, try to identify the 
out-ofrange ones. They must go somewhere. Somewhere is most often a 
monitor subroutine, or some DOS subroutine or subs in either BASIC.

Table 3-1 shows us the most popular locations used by the monitor, DOS, 
and I/O. Try to get a match between Table 3-1 and each out-of-range 
subroutine call. Label this match with a brown felt-tip pen. We purposely kept 
this list down to the more popular locations. We may look at Applesoft, Integer 
BASIC, and DOS internals in a future enhancement. Most user libraries have 
extensive memory listings if you get into something out of the ordinary.

For instance, in $8E16, we have a JSR $FDED. A check of Table 3-1 shows us
it is one of the most often used monitor routines called COUT. This code takes 
what is in the accumulator and outputs it as a character. This output goes to 
whatever is connected to the output hooks. The code should look like this…

Notice that this immediately tells us that the code module is used to output 
characters. This very much pins down how the module is used and its place in 
the big picture. And we still haven’t analyzed any code.

Sometimes a JSR call will point to a different part of user RAM. This usually 
means that the target program is in more than one piece. Each piece, of course,
will eventually have to be dealt with. The Wizard and the Princess is a good 
example of a program that has code modules all over the lot.  



52    Enhancement 3

Table 3-1. Important Monitor, DOS, and I/O Locations.

PAGE $00
Hex       Decimal       Mnemonic           Use                          

$20    12    WNDLFT    Left side of scroll window
$21        33   WNDWTH Width of scroll window
$22       34   WNDTOP    Top of scroll window
$23       35   WNDBTM   Bottom of scroll window

$24       36   CH               Cursor horizontal position
$25       37    CV               Cursor vertical position
$21       38    GBASL        LORES graphics base low
$27       39    CBASH       LORES graphics base high

$28       40    BASL          TEXT base address low
$29       41     BASH         TEXT base address high
$2A      42     BA2L          Scroll temporary base low
$2B      43    BAS2H       Scroll temporary base high

$30      48     COLOR      Holds the LORES color value
$32      50     INVFLG     Normal/Inverse/Flash mask
$33      51     PROMPT    Holds prompt symbol
$34      52     YSAV          Temporary Y register hold

$36      54     CSWL         Output character hook low
$37      55    CSWH         Output character hook high
$38      56     KSWL         Input character hook low
$39      57     KSWH        Input character hook high

$45      69     ACC           Accumulator save
$46      70    XREC        X register save
$47      71     YREG        Y register save
$48      72     STATUS     Flag register save

$49      73     SPNT         Stack pointer save
$4E     78     RNDL         Keybounce random number low
$4F     79    RNDL         Keybounce random number high

PAGE $03
Hex       Decimal       Mnemonic           Use                          

$03D0    976                       Re-enter DOS
$03EA      1002                     Reconnect DOS I/O hooks
$03Fo      1008     BRKV     Break vector low address
$03F1       1009                     Break vector high address

$03F2       1010    SOFTEV Warm start vector low address
$03F3       1011                    Warm start vector high address
$03F4       1012     PWRDUP Warm start EOR AS checksum
$03FS       1013     AMPERV  Applesoft "&" Jump Code

$03F8       1016     USRADR   Control Y vector Jump Code
$03FB       1019    NMI          NMI vector Jump Code
$03FE       1022    IRQLOC   Interrupt vector low address
$03FF        1023                     Interrupt vector high address 



Tearing Into Machine Language Code 53

Table 3-1, cont. Important Monitor, DOS, and I/O Locations.

PAGE $C0
Hex       Decimal       Mnemonic           Use                         

$C000     -16384       IOADR      Keyboard input location
$C0l0         -16368       KBDSTRB  Keyboard strobe reset
$C020          -16352       TAPEOUT     Cassette data output
$C030          -16336       SPKR     Speaker click output

$C040          -16320       STROBE     Game I/O connector strobe
$C050          -16304        TXTCLR     Graphics ON soft switch
$C051           -16303       TXTSET      Text ON soft switch
$C052           -16302      MIXCLR     Full screen ON soft switch

$C053           -16301        MIXSET      Split screen ON soft switch
$C054           -16300        LOWSCR    Page ONE display soft switch
$C055           -16299        HISCR         Page TWO display soft switch
$C056           -16298        LORES        LORES ON soft switch

$C057           -16297        HIRES        HIRES ON 50ft switch
$C058           -16296                            Annunciator 0 OFF soft switch
$C059           -16295                           Annunciator 0 ON soft switch
$C05A          -16294                           Annunciator 1 OFF soft switch

$C05B          -16293                            Annunciator 1 ON soft switch
$C05C          -16292                            Annunciator 2 OFF soft switch
$C05D          -16291                            Annunciator 2 ON soft switch
$C05E          -16290                           Annunciator 3 OFF soft switch

$C05F           -16289                          Annunciator 3 ON soft switch
$C060           -16288       TAPEIN     Cassette tape read input
$C061           -16287         PBO           Push button 0 input
$C062           -16286       PB1             Push button 1 input

$C063           -16285       PB2            Push button 2 input
$C064           -16284       PDLO        Game Paddle 0 analog input
$C065           -16283        PDL1        Game Paddle 1 analog input
$C066           -16282        PDL2        Game Paddle 2 analog input

$C067           -16281        PDL3        Game Paddle 3 analog input

DISK ACCESS
Q7      Q6        ACTION  

clear clear    READ
clear   set       SENSE
set      clear   WRITE
set      set       LOAD



54    Enhancement 3

Table 3-1, cont. Important Monitor, DOS, and I/O Locations.

MORE PAGE $C0
Hex       Decimal       Mnemonic           Use                           

$C080   -16256      Disk stepper phase 0 OFF
$C081   -16255      Disk stepper phase 0 ON
$C082   -16254      Disk stepper phase 1 OFF
$C083   -16253     Disk stepper phase 1 ON

$UJ84  -16252       Disk stepper phase 2 OFF
$C085   -16251       Disk stepper phase 2 ON
$C086   -16250      Disk stepper phase 3 OFF
$C087   -16249       Disk stepper phase 3 ON

$C088   -16248       Disk main motor OFF
$C089   -16247       Disk main motor ON
$C08C  -16244         Disk Q6 CLEAR
$C08D  -16243        DiskQ6SET

$C08E  -16242         Disk Q7 CLEAR
$C08F  -16241         DiskQ7 SET

PAGES F8-$FB
Hex       Decimal       Mnemonic           Use                           

$F800 -2048   PLOT               Plot a block on LORES screen
$F819 -2023    HLiNE             Drawa horizontal LORES line
$F828 -2008    VLlNE             Draw a vertical LORES line
$F832 -1998    CLRSCR          Clear full LORES screen

$F836 -1994    CLRTOP          Clear top of LORES screen
$F847 -1977    GBASCALC     Calculate LORES base address
$F85F -1953    NEXTCOL       Increase LORES color by three
$F864 -1948    SETCOL           Set color for LORES plotting

$F871 -1935    SCRN                Read color of LORES screen
$F941 -1727    PRNTAX           Output A then X as hex
$F948 -1720    PRBLNK           Output three spaces via hooks
$F94A -1718    PRBL2               Output X spaces via hooks

$FA43 -1469    STEP                  Single step (old ROM only!)
$FAD7 -1321    REGDSP            Display working registers
$FB1E -1250    PREAD               Read a game paddle
$FB2F -1233    INIT                   Initial i ze text screen

$FB39 -1223    SETTXT               Set up text screen
$FB40 -1216    SETGR                 Set up LORES screen
$FB4B -1205    SETWND             Set text window to normal
$FBCl -1087    BASCALC             Calculate text base address

$FBD9 -1063    BELL 1                Beep speaker if ctrl G
$FBE4 -1052    BELL2                 Beep speaker once
$FBF4 -1036    ADVANCE           Move text cursor right by one
$FBFD -1027    VIDOUT              Output ASCII to screen only
 



Tearing Into Machine Language Code 55

Table 3-1, cont.
Important Monitor,

DOS, and I/O Locations.

PAGES $FC-FD
Hex       Decimal       Mnemonic           Use                          

$FClO    -1008  BS             Backspace screen
$FC1A    -998    UP           Move screen cursor up one
$FC22    -990    VTAB       Vertical screen tab using CV
$FC24    -988    VTABZ     Vertical screen tab using A
$FC2C    -980    ESCl          Process escape movements A-G

$FC42    -958    CLREOP   Clear text to end of screen
$FC58    -936    HOME      Clear screen and home cursor
$FC62    -926    CR             Carriage return to screen
$FC66     -922    LF             Line feed to screen onIy
$FC70     -912    SCROLL   Scroll text screen up one

$FC9C     -868   CLEOL      Clear text to end of line
$FCA8     -856   WAIT        Time delay set by accumulator
$FDOC    -756    RDKEY     Get input character via hooks
$FD1B     -741    KEYIN      Read the Apple keyboard
$FD35     -715    RDCHAR   Get key and process ESC A-F

$FD62     -670   CANCEL    Cancel keyboard line entry
$FD67     -665     GETLNZ   CR, then get kbrl input line
$FD6A     -662     GETLN     Get input line from keyboard
$FD6F     -657     GETLNl    Get kbd input, no prompt
$FD8B     -629     CROUTl   Clear EOL then CR via hooks
$FD8E     -626     CROUT    Output return via hooks

$FDDA    -550     PRBYTE  Output full A in hpxto hooks
$FDE3     -541     PRHEX    Output low A in hex to hooks
$FDED    -531     COUT       Output character via hooks
$FDFO    -528     COUTl      Output character to screen
$4E          -578     RNDL       Random number low
$4F           -579    RNDH      Keybounce random number high

PAGES $FE-$FF
Hex       Decimal       Mnemonic           Use                           

$FE2C   -468     MOVE         Move block of memory
$FE36   -458      VERIFY      Verify block of memory
$FE5E   -418      LIST            Disassemble 20 instructions
$FE63   -413      L1ST2          Disassemble A instructions
$FE80   -384      SETINV      Print inverse text on screen
$FE84   -380      SETNORM Print normal text on screen

$FE93   -365      SETVID      Grab output hooks for screen
$FEB0   -336     XBASIC      Goto BASIC, destroying old
$FEB3   -333      BASCON    Goto BASIC continuing old
$FEC2   -318      TRACE       Start tracing (old ROM only!)
$FECD  -307      WRITE      Save to cassette tape
$FEFD  -259      READ         Read from cassette tape

$FF2D   -211      PRERR       Print "ERR" to output hook
$FF3A    -198     BELL          Output bell via hooks
$FF3F    -193     IORESR     Restore all working register
$FF4A    -182    IOSAVE      Save all working registers
$FF59    -167      OLDRST    Old reset entry, no autostart
$FF65    -155      MON          Enter monitor and beep spkr
 



56    Enhancement 3

$8DFF-      20 4c 0E 8E               JMP  8E0E 

$8E0E-      20 1F 8E              JSR FDED

PAINT ALL ABSOLUTE JUMPS PINK

As you tear into your target program, go through each and every subroutine
call and find out what it points to. If there are a few mystery locations, wait till 
later on these. Be sure that you pin down as many subs as you can.

Now is a good time to start a separate list of which addresses go where. 
Label this list "Cross References" and show the sources of all subroutine calls. As
you go along, any time that one part of the code refers to another part, add it 
to this list. Once again, do this by hand, even if you have an automatic cross 
reference and disassembly program available. Eventually, you will want this list 
in numeric order, but for now, just list addresses as you run across them.

 Ready for a new color? Get the pink highliter and add a pink line for any 
absolute JMP code ($40) or relative JMP code ($6C). Draw the pink line all the 
way across the sheet for in-action jumps starting just beyond the address. Draw
the pink line from the machine code to only about an inch past the operand for
absolute jumps that go out of the action. Then, end these lines with half an 
arrowhead like you did with the subroutine calls.

If the jumps are inside the action, then also put a pink line showing where 
the jump hopped to, just like you did with the subroutines. The jumper and 
jumpee may be connected vertically along the left-hand edge, but do this only 
if the two are less than twenty lines apart. Also "vote" on the most popular 
jumps, with dots if you see more than one jump going to a single location. Add
all jumps to your cross-reference sheet.

If the jump is outside the action, use Table 3-1 to try and find out where the
jump is going to. Then, label the jump using a brown felt-tip pen. Here are the 
two steps that are involved in pinning down an inside-the-action Jump…  

and… 



Tearing Into Machine Language Code 57

COUT (Monitor Clear EOP)$9020-      20 4C 9C                 JMP $FC9C

$9208-      C5 23        CMP $23
$920A       90 11        BCC $921D
$920C       2C 65 8E BIT $8E65
$920F       70 08       BVS $9219
$9211        c6 25        DEC $25
$9213        21 20 92   JSR $9221
$9216        4C 70 FC  JMP $FC70
$9219        A5 22        LDA $22
$921B        85 25        STA $25
$921D        20 24 FC  JSR $FC24
$9220        60             RTS

SHOW THE BRANCHES IN BLUE

An outside-the-action jump looks like this… 

Notice what is happening? The flow and structure of our program is rapidly 
becoming obvious. We already have all sorts of hints as to which part of the 
action does what. But, we are still nowhere near ready enough to tear into the 
code.

On an indirect jump using the ($6C) code, go to the address shown in 
parentheses and identify this as an indirect address, and show the location that 
is using it for the indirect jump. Let’s hack away at our structure some more…  

Get out the blue page highliter and paint each branch (BCC, BCS, BMI, 
BEQ, BNE, BPL, BVC, BVS, but not BIT or BRK) and its address blue. Then, go to
that address and enter a blue line on the left. 

Finally, if the branch is less than twenty lines up or down, show the branch 
action with a light blue felt-tip pen. Show the direction of each branch, and 
keep any branch lines from crossing. Here is an example…

If you find branch lines that try to cross each other, draw the problem line 
up the right-hand side of the address column or elsewhere as needed. It is very 
important to be able to glance at the listing and tell immediately which branch 
goes where.



58    Enhancement 3

COLD ENTRY
WARM ENTRY
(Version 1.0)

8DFF   4C 0E 8E    JMP $8EOE 
8E02   4C 1F 8E     JMP $8E1F
8E05   40A             ASL 
8E06   4FF             ???
8E07   492              ???

SEPARATE THE CODE MODULES FROM THE STASHES

We are really into our structure now. Here, the arrows jump forward, 
conditionally skipping part of the code. Often, the arrows will go backwards, 
outlining a block of code called a loop. The loops visually leap out at you. 
Check the big one at $9298. Note that there can be more than one tail 
connected to any given arrow.

Three refinements. The first thing is to watch out for possibly irrational 
code. If you are in doubt, paint only the mnemonic blue. The second is to label 
branches directly to RTS as an RTS, rather than showing the arrows. Finally, 
very long branches should show each end separately, to keep from getting too 
many lines on the sheets.

Now, carefully, look over the action and identify each "holistic" and 
"rational" code module. A code module should have at least one obvious entry 
point and at least one obvious exit point. Any question marks or lister mixups at
the beginning of each module should be resolved so that we can exactly 
identify the boundary of each code module.

Then, label carefully in red all the external entry points that you know 
about, and any locations that the instructions refer to. Our "cold" entry point is 
apparently "0R" which translates to the first code byte at $8DFF. The "warm" 
entry point is apparently "3R", or $8E02. 

The version number is at "6R", or $8E05. We see an "0A" here, which 
apparently stands for version 1.0. The "R" mentioned above may be new to 
you. The "R" means "relative" and is used with relocatable programs. "0R" is the 
first byte in the program, regardless of where it sits; "3R" is the third byte, and 
so on.

By the way, if some of our example codes don’t exactly fit your listing, 
compare the version numbers. Usually, a different version will move parts of the
code up or down a few slots from where they first were.

Here’s what this new stuff looks like …

Note that the ASL mnemonic is meaningless since we have a very short 
stash here holding the version number. A mnemonic is only meaningful when 
applied at exactly the right place in working code.

While you are labeling outside entry points, be sure to check the top of 
page Three for warm start, breakpoint, IRQ, NMI, and RESET vectors. These 
may point to important starting or recovery portions of your code. Many newer
programs will RESET to themselves, rather than to the monitor. The RESET and 
soft start pointers can be a great help in showing you where the "high level" 
code sits.



Tearing Into Machine Language Code 59

IDENTIFY FILES AND STASHES 

Since HRCG is a utility or a service type of support program, it doesn’t mess 
with the page Three hooks. But this is an exception, so always check.

OK. Separate all your modules and identify all the external access hooks. 
Identify everything else that you know for certain from the instructions. What’s 
left in the action consists of code modules as yet undiscovered. Such as dead 
code, garbage, stashes, or oversights.

Dead code is code that is never used. Don’t throw any away just yet, 
because it will most likely come to life later. This can happen because you have 
yet to discover some address entry points or else you have missed coloring 
something along the way.

A lot of programmers will leave dead code in their programs so that the 
next code module or file can start off nice and neat on an even page boundary.
Dead code may also be some location that will be written to later by DOS. 
Dead code will usually be completely rational, but it won’t seem to tie in with 
the rest of the program.

Do not prejudge garbage. It may become most meaningful later on. Most 
programmers try to shorten their code as much as possible, so if it looks like 
lots of garbage is left, chances are you haven’t gotten as far as you think. 
Stashes are short code files that have meaning. We will attempt to identify 
many of them in the next section.

And oversights, of course, are your own doing.

We now should have identified all of the working code modules, and should
be able to find most of their access and entry points, their interaction, and their
exits. Now, we could actually start to think about tearing into the code.

But no, not yet. Lots of details still remain. Remember that the longer you 
hold off on finding out exactly what the code does, the easier the job will get, 
and the less of it you will have to do.

Let’s see what the stashes and files have to say…

We have a sort of a chicken-and-egg problem. We can’t tell yet what the 
files are up to since we don’t know yet how the program works. And, since we 
don’t know how the program works, it can’t tell us what the files are up to.

Fortunately, there are several file filters you can apply that can isolate most 
of the stashes and bulk files and tell you their meaning and intended use. Crack
your files and you have made a tremendous progress.

Even if you can only crack a few files now, doing so is definite progress, and 
allows moving bytes from the unknown to the known. This is very much like a 
big jigsaw puzzle. Not only does each piece fit somewhere, but it also gets 
removed from the pile of unknown remaining pieces. This makes identifying 
and using the rest of the pieces easier since there are now less of them.

Let’s isolate all the rational code modules and assume that everything left is 
a stash. Things may not be nearly this simple, but let’s try it anyway. Fig. 3-9 
shows us the remaining stash locations.

When you think you have a stash identified, put a narrow yellow stripe up 
the extreme right-hand margin, going over the tractor holes. Eventually, you 
want to end up with a continuous wide line up and down the right-hand side, 
wide yellow for fully known and understood stashes, and wide green for fully 
known and understood code modules. When the last of the white right margin 
disappears, you have conquered your target program.



60    Enhancement 3

USER
SUB FILE

CODE
MODULE

ASCII
HEADER FILE

WORKING
FLAG FILE

CODE
MODULE

ADDRESS
FILE

CODE
MODULES

HIRES
BASE FILE

GARBAGE

$8DFF

$8E0B

$8E42

$8E5F

$8E73

$8F48

$8F7D

$92DF

$92EB

$92FE

Fig. 3-9. Separating HRCG stashes 
from the code modules.

We see a two-slot stash at $8E05, and then another obvious one starting at 
$8E42 on your listing. But wait. The "vibes" of our stash change dramatically at 
$8E5F. Let’s assume we have a second stash starting there. Put a brown dotted 
line all the way across between $8E5C and $8E5F to remind us we think we 
have two separate files. The second stash apparently ends with $8E73, since 
$8E74 holds what looks like rational code, even though this code doesn’t seem 
to be isolated yet.

We have a long stash starting at $8F48, obviously consisting of lots of 
question marks and the patently excessive use of BCC branches to dumb 
places. Where does this stash end? It’s not obvious at first, but let’s guess that it
ends with $8F81. The code starting at $8F82 (that we aren’t supposed to be 
reading yet) says to put something in $8E60 and then return. This is rational 
thinking, particularly since $8E60 is a slot in another stash and it might end up 
as a flag in a flag file.

Another stash starts at $92DF, identified by lots of zeros. Again, notice a 
change of vibes at $92EB. The first twelve locations are in three groups of four 
each and all end in zero. The remainder of the stash is strange. Let’s call it two 
separate stashes and, once again, add a dotted brown separation line.

Now comes the tricky part. First, we want to guess what each location in 
each stash is used for, and, then, we want to nail each location down for sure.

To do this, make yourself up some file and stash filters. A stash filter is some 
test for some pattern that makes sense to you and to the particular target 
program you are attacking. The filter is valid if its answer leaps out at you and is
then clinched by some independent test.



Tearing Into Machine Language Code 61

STASH AND BULK FILE FILTERS

( ) Is it something obvious?
( ) Is it an ASCII string?
( ) Is it a table of addresses?
( ) Is it a group of flags?
( ) Is it a conversion table?
( ) Is it DOS related?
( ) Does it fill a program need?

These are the usual filters I try first and the order in which I try them. The 
HRCG is very accommodating in its stash uses. The early tests will tell you a lot 
about each stash. Other programs may not be so easy.

We attack the chicken-and-egg problem this way. First, we filter the stashes 
and bulk files as best as we can to find out as much about them as we are able. 

Then, we take this information back to the code modules and see what new 
thing this tells us about the modules. Then, we look into the modules and see 
what they tell us about the remaining unknown files.

Three or so trips round and around and we should have things pinned 
down fairly well. Now, if you are into an Adventure or something else really 
heavy with stashes and bulk files, it won’t be this simple, but file filtering always
makes a very good starting point toward further understanding.

Let’s try these filters one by one and see what they tell us. One example of 
an obvious file is any code on a display page. This might be $0400-$07FF for 
text or LORES page One, $0800-0BFF for the less common text or LORES page 
Two, $2000-3FFF for HIRES page One, or $4000-$5FFF for HIRES page Two. 

If any of these pages are in use, the bytes stored here have to correspond to
the image on the screen.

Note that the screen images will change as the program is used. What you 
see is the code for the display pages at the exact point in the program where 
you did your listing. Chances are that text page One got messed up by the 
listing process itself.

Besides their obvious location, the HIRES color bytes tend to be mostly $00, 
$2A, $55, $7F, $80, $AA, $D5, and $FF bytes. In HRCG, we can often ignore 
these for a while, since they are the result of the program and not a part of it.

Another example of obvious code happens when you are reading 
interpreted BASIC statements. We’ll save details on this for another time. But 
note that the byte patterns in BASIC are distinctive, starting with a line number,
the location of the next program line, and, then, followed by a parsed code 
using token keywords and ASCII symbols, and, finally, ending up with an 
end-of-statement symbol. 

You can check into the LOADHRCG Applesoft program for a quick example. 
Do this by hex dumping machine code starting at $0800.

Usually, the BASIC code tells you you are looking in the wrong place. But,    

Normally, you will have to design these filters yourself. Do so very carefully. 
Your choice of filters will vary with the target program and how long it is. Here 
are some obvious filters to try first…   



62    Enhancement 3

machine language is sometimes stuffed inside BASIC programs and, at other 
times, it will interact directly with the BASIC statements. This happens in the 
case of fast sort routines, variable locators, cross-reference programs, and so on.

As a much simpler and shorter example of an obvious file, look at $8E06. It is 
two bytes long. Is it an address? The address is $92FF. Is there anything special 
about $92FF? There sure is! This is the location of the start of the bulk file that 
we think is an alternate character set. Since we obviously need a pointer like 
this and since a pointer would be early in the program, let’s assume this stash is
the pointer to the character set start.

Make sure any "obvious" evidence is very strong. Don’t make wild guesses, and 
don’t make too many guesses at once. Above all, don’t force things to fit your 
pet theories about what a stash "has" to be. In this case, guessing an address 
and having that address reinforce our guess is reasonable.

Next, try some ASCII filters. The ASCII code is the standard way of stashing 
letters, numbers, and punctuation in your Apple. Table 3-2 shows us the ASCII 
code. An ASCII-coded stash will be mostly code starting with $CX or $DX, will 
have a few $AO spaces, and will often end with a $8D carriage return.

This assumes, as most Apple programmers do, that the ASCII most-significant 
bit is set to a 1. If the MSB is not set, then an ASCII file will be mostly values in 
the forties and fifties, with a $20 for each space, and with a $0D carriage return
ending. If the file is mostly lower case, then the code will be mostly "EX" and 
"FX" values for a set MSB and "sixties" and "seventies" for a cleared MSB.

The actual display code used by the Apple on its upper-case-only old text 
screen differs slightly from ASCII. This code is shown in the Apple manual. The 
code provides for no control characters and offers normal, inverse, and flashing 
upper-case-only characters.

Programmers rarely use this viIdeo display code inside their programs. Instead, 
they usually will use ASCII, and set and clear the flashing and inverse flag 
(location $0032) as needed. The video display code can only be written directly
to the screen and must not be output to any other device via the output hooks.

The code would get used in a program only if the text display needs a wildly 
changing mix of flashing, inverse, and normal characters, and, then, only if the 
upper-ease-only text screen is the only intended output.

Note that ASCII text is automatically converted to video display code by the 
usual monitor routines as it goes onto the screen.

Now, any file will give you some message back if you filter it for ASCII. The key 
test is whether the message says anything meaningful. You can ASCII filter all 
your stashes and bulk code, but it pays to pick only the most promising first.

In the case of the HRCG, we see that the stash beginning at $8E42 looks the 
most promising. ASCII filter this code and you get…

This is obviously the prompt message that first appears under HRCG. The 
odds of it being anything else are insanely small.

Note as you "crack" a stash, that it no longer belongs to the unknown. 
Further, a cracked stash will greatly simplify tearing apart the actual code, for 
we can now assume the code module directly above it on the listing will be 
involved in printing out this message.

As you get practice, you’ll be able to immediately spot stashes and bulk files
that will yield useful messages under ASCII code. Be sure to do this by hand a 
few times until you get the feel of this powerful filter.

HI-RES CHAR GEN VERSION 1.0



Tearing Into Machine Language Code 63

We may look at some short and powerful ASCII "snoop" programs in a 
future enhancement. Commercial programs that list ASCII strings can also be 
used. But, watch out that loading the snoop program doesn’t bomb part or all 
of your target code. For now, do your ASCII snooping by hand untill you can 
spot an ASCII file at a casual glance.

The acid test of an ASCII filter is whether you get a message back or not. 
Once again, don’t force things. If the filter doesn’t hit you over the head with 
the answer, try something else.

If the message seems fragmented or disjointed, possibly you are looking at 
an area that gets written repeatedly by DOS putting message upon message on
top of each other. A copy of the key buffer from $0200-$02FF may also look 
the same way. In either case, you are far more interested in the use of this file, 
rather than its contents.

Our next trial stash filter should answer the question, "Do we have a list of 
addresses?" Look at the stash starting at $8E5F. A bunch of zeros, with a $92FF 
in it. Recall that 92FF points to the start of the default character generator. Do 
we have a file of alternate character sets here?

It doesn’t look like it, but those zeros suggest a test. Let’s run the HRCG 
and, then, let’s load nine alternate character sets. Then, we will see how and if 
this stash changes.

Try it and there’s no change! This should teach us several things. First, 
always be sure you have what you think you have in the machine. Second, be 
sure and try any trick you can think of, even if it doesn’t work.

Third, and most importantly, NEVER force anything to fit your pet theories. 
The address filter clearly fails on this file. More on this stash in later.

Let’s try an address filter on the next stash starting at $8F48. Every second 
entry is either a $8F or a $90. Look at it on the hex dump and the addresses 
leap out at you. Color every second address pair yellow on your hex dump. 

Note that the addresses sit backwards on the dump, with the high byte 
second and the low byte first. This low-byte-first style is typical of most 6502 
machine language                       

Table 3-2. ASCII Code

NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

DLE DCl DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

(SPACE)! " # $ % & ’ ( ) * + , – . /

0 1 2 3 4 5 6 7 8 9 : ; < = > ?

@ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [ / ] ^ _

‘ a b c d e f g h i j k l m n o

p q r s t u v w x y z { } - DEL

0 1 2 3 4 5 6 7 8 9 A B C D E F

U
P

P
ER

  
H

EX
  

B
Y

T
E

0 or 8

1 or 9

2 or A

3 or B

4 or C

5 or D

6 or E

7 or F

LOWER  HEX  BYTEASCII



64    Enhancement 3

$8F7D-    91 BO         STA (BO) , Y
$8F7F-     24 A9         BIT $A9
$8F81-      80              ???
$8F82-      8D 60 8E   STA $8E60
$8F85-      60              RTS

$9046 + 1 = $9047, an immediate RTS.
$8F7D + 1 = $8F7E, a royal mess
$8FA9 + 1 = $8FAA, the start of a subroutine!
$8FD1 + 1 = $8FD2, the start of a subroutine!
$8FEC + 1 = $8FED, the start of a subroutine!
$901A + 1  = $901B, the start of a subroutine

It looks like we definitely have a table of addresses. For the clincher, check 
to see if the addresses all go somewhere rational! 

And we have another surprise! Each and every address goes right in the 
middle of the code all right, but each one seems to point to an extremely 
dumb place!

Let’s break our rule on tearing into code for a moment and see what code 
we find immediately above this address table. In this code module, we take a 
value, multiply it by two and, then, use it as an X index to get the high address 
in $8F3C. This high address gets shoved onto the stack. Then, we get the low 
address at $8F40 and shove it onto the stack also. 

Then, we return from the subroutine. What we have really done is we have 
faked an indirect jump to the selected module.

Now, what does a subroutine return do? It pops the stack twice and goes to
the address it thought it came from. Only we just changed that with the 
address low and address high stack pushes. 

Note that two pushes and two pops left the stack exactly where we started. 
Our new code module is, therefore, at the same level that we were before, so 
we have done an indirect jump, rather than a JSR.

Ah! But, a subroutine return does not return to the address on the stack. It 
returns to the address on the stack plus one! This quirk is from the 6502 
Programming Manual. Now, let’s try adding one to each address and see what 
results … 

Keep this detective work up, and we find that each address, except for the 
first two, points to a subroutine. The first one, an immediate return, looks as if 
it is a mistake. What about the royal mess? Here is a classic example of our lister
getting off on the wrong foot. Right now, the lister says …   

We know the first part of this is wrong, since we have stashed addresses and
not working code here. We suspect the end of the listing may be right, since it 
seems rational. Our problem address is trying to point to $8F7E, so let’s let it 
do so. 

Relist things starting with $8F7E, and you get ...



Tearing Into Machine Language Code 65

$8F7E-    BO 24          BCS $8FA4
$8F80-     A9 80          LDA #$80
$8F82-     8D 60 BE    STA $8E60
$8F85-     60                RTS

And this is a nice and rational little subroutine. Our problem mess was 
solved by making sure our lister had something worth listing as its first entry.

Wow, what a bit of detective work. Our filter has found 27 addresses that lie
in the middle of our code, all of which point to valid and workable subroutines,
except for the first one that immediately returns.

Let’s carry this further to see what an address stash will tell us about those 
subroutines. Now, 27 is one more than 26, the number of letters in the 
alphabet. Look at the ASCII code given back in Table 3-2, and we see a 
sequence of @ABCDEF… that jumps out at you. If the program was using a 
pointer that started with @ for a 00 value, we would have 27 values, the last 26
of which would be the alphabet in order. Naturally, @ wouldn’t be used, so it 
would immediately return.

Let’s take a wild guess that @ = Address 0, A = Address 1, B = Address 2, 
and so on. Now, let’s see if this heads to any place that is useful.

Back to the HRCG manual. We have two sets of A to Z commands. This 
strongly suggests trying to fit the menu selections to the subroutines we 
already have. Right now, this is sort of a wild guess. But, if it works, and if we 
can prove it absolutely, we will have chopped mucho time off of our 
target-program attack.

Let’s look further. Put a brown arrow at each subroutine’s starting address 
that we think does something from A to Z. We get strong reinforcement right 
off the bat since all of them start off on a new code module. We also notice 
something rather strange. Each and every module starts off with BCS or BCC.

Odd.

But, remember that there are two alphabets needed in HRCG, one for the 
main menu selection and one for the option selection. Let’s continue, since 
everything has been reinforced so far. 

Apparently each subroutine is a subroutine pair, one of which handles the 
"main" menu selection and one of which handles the "option" menu selection. 
Further, the condition of the carry flag tells us which way to go.

Which is which? To find out, we’ll need more detective work. Note that we 
have a function selection "E" but no option selection "E". Note also that we 
have an option selection "R", but no function selection "R". Go to the sixth 
address on the list (E is the sixth character starting with @), and we see a BCS 
to RTS. Apparently a cleared carry is a function and a set carry is an option.

Even more important, look at that monitor subroutine clear-to-end-of-screen
leaping out at you at $9028 on your program listing. This is a solid and 
completely independent check on what these addresses are used for.

As a final check, we look at entry "R" (the fourteenth address), and we see a 
BCC to RTS, verifying that the carry flag decides which alphabet to use. The 
code at "R" should "Reverse the overlay" for us. A quick look at this code           



66    Enhancement 3

shows it setting two flags for us-another confirmation. This confirmation is 
much weaker than the first one, but support is support.

So, go through all your code addresses and label their uses with a brown 
felt-tip pen. Use fairly large letters. $8F7E should be labeled "(A) function 
SELECT N". Check the BCS branch location and the code starting at $8FA4 gets 
labeled "(A) option PAGE1 PRIMARY".

Continue through the list. The modules that use the cleared carry are 
functions, and the ones that use a set carry are options.

Note the power of the address filter. We now know the meaning and use of 
well over half of the code modules, without tearing into the code at all. HRCG 
is very friendly with its menu-driven selections. In other programs, you may not
be able to immediately tell one address-code module from another. But the 
very fact that you can break up the modules into little chunks is extremely 
valuable and a major time saver.

The usual clue to filtering address tables is that every second entry is the 
same and the backwards entry pairs seem to be working through a range in a 
usually increasing order. The HRCG stash at $8F48 seems to be the only table 
of addresses we have, so we will try some new filters.

Our next trial stash filter asks, "Do we have a group of flags? A flag is some 
location that the program refers to so that it can decide what it is going to do 
next. In the HRCG, we can expect flags for the display page, the primary page, 
the working alternate character-set base address, the display mode, and so on. 
In an "adventure" program, the group of flags can show what is in which room,
whether the giant armadillo is asleep or awake, whether the golden clockwork 
canary can be wound, and similar conditional things.

A flag file will often be mostly zeros, with a few FF’s thrown in here and 
there. Other hex bytes in a flag file may have only a single bit set, such as $01, 
$02, $04, $08, $10, $20, $40, and $80. Flag files may also hold an occasional 
address or two.

One very good way to verify a flag file is to find some stash that looks 
reasonable, and then lightly scan nearby code modules to find if there are 
references to these locations. In the HRCG, we see a likely file starting at $8ESF.
A check through some of the option code shows lots of them working with 
locations $8ESF through $8E73.

There’s usually a two-step process involved in understanding a flag file. First,
you prove the flag file is there and checking into the variables of the program 
in the next section, you attempt to put specific meaning onto every flag.

Pinning down flag meanings can be quite a challenge. The original 
programmer started with his flag definitions and locations and, then, built his 
program around them. You have to do the opposite, taking strange code and 
inferring what the flags originally stood for.

Our "Is it a conversion table?" filter is one that takes some experience to use.
A conversion table relates addresses to data in some manner. Table lookup is a 
very fast way to do things, compared to calculating values. The stash starting at
$92DF "looks" somewhat like a conversion table that somehow "seems" to be 
involved with HIRES (high resolution) base addresses. We’ll keep this one a 
"maybe" for now.

Other examples of conversion tables are the shape tables and sprite maps 
used in HIRES graphics. A shape table holds a bunch of drawing directions, as 
needed, to directly write on the HIRES screen, using Apple’s graphics routines. 
A sprite map will hold an image of what is to be remapped onto a HIRES 
screen. A character from an HRCG character-set file is a sprite map example.



Tearing Into Machine Language Code 67

Let’s continue down the file filter list. Many machine language programs 
create their own DOS, or else, use DOS variations for protection, access, and so
on. In these cases, there are some 005 filters you can apply to your stashes.

These DOS filters do not seem to help us here on the HRCG. A file involving 
DOS may consist of bunches of code always ending in $XO or $X8. These are 
used in the DOS nibble encoding. DOS code modules will often use header 
constants of $D5, $AA, $96, markers of $DE, $AA, $EB, and a trailer of $DE, 
$AA, and $EB. These values will jump out at you once you tune yourself into 
them. DOS code will also repeatedly use LDA $C08C,X commands, followed by
a BNE back to itself. "X" here is the slot number. This looks real dumb when you
first see it, but it is a sure sign of DOS read activity.

Another way to filter a file is to ask, "Does it fill an obvious program need?" 
You’ll have to design suitable filters for each and every target program. Let’s 
take a closer look at our bulk file and see what we can find out about it from its
structure alone.

Visual clues can help bunches here, such as the frequency of repetition of 
some marker. In Zork, the vocabulary file has a zero and, then six bytes, over 
and over again. The "objects" file takes nine bytes and is in the form of seven 
flags and an address. Look for these patterns. Break up a file into several smaller
files whenever you see any change in these patterns.

Even if you don’t have the foggiest idea about what is in the file or how it is
used, deduce as much as you can about the file structure, for this will be a 
great help later.

We suspect our bulk file is a default character set. All right. That means that 
the bits should look like characters if you arrange them just right. We know the 
characters are arranged in 7 X 8 squares from the ANIMATRIX program. So, a 
reasonable "Does it fill a program need?" filter on this bulk file is making sure to
look at each and every bit and see if there is some visual pattern that looks like 
character dots. Let’s start at $9FOO…   

Now, that one is singularly uninformative. Yet, it is the first character and 
we know that the first noncontrol character in ASCII is a space. Let’s try another
one at $9307…    

($00) –

($00) –

($00) –

($00) –

($00) –

($00) –

($00) –

($00) –

($08) –

($08) –

($08) –

($08) –

($08) –

($00) –

($08) –

($00) –



68    Enhancement 3

($14) –

($14) –

($14) –

($00) –

($00) –

($00) –

($00) –

($00) –

($08) –

($14) –

($22) –

($22) –

($3E) –

($22) –

($22) –

($00) –

Now, that looks like an exclamation point, the second printing ASCII 
character. But, things are still weak. Let’s try to predict a quote for the next 
one, starting at $930F. 

And, sure enough…   

Apparently the characters are in the character file in order, just like they go 
on the screen. Only, we may be jumping to conclusions. Let’s try several more 
characters. 

There are 96 characters, each of which takes up 8 bytes, so we can expect 
768 bytes total, or exactly 3 pages. 

Thus, we would expect the numbers and punctuation to start at $92FF, the 
upper-case alphabet at $93FF, and the lower-case alphabet at $94FF.

To prove this, we would expect a capital" A" to be at $93FF + $08 = $9407. 
Try it, and lo and behold…   

So, obviously, we know everything that we should know about the bulk file 
now, right?

Wrong!

One very important rule…  

Always, check things as independently and as completely as you can before 
convincing yourself that something is so. 

In the case of our bulk file, the surprise comes on the next character.

THE FINAL SURPRISE IS
THAT THERE ARE NO

MORE SUPRISES!

No matter where you are in
cracking a file, there is ALWAYS
one surprise remaining between
where you think you are and
where you really are.



Tearing Into Machine Language Code 69

($1E) –

($22) –

($22) –

($1E) –

($22) –

($22) –

($1E) –

($00) –

($00) –

($22) –

($00) –

($00) –

($00) –

($22) –

($00) –

($00) –

Uh - whoops. That’s a B all right, but why is it backwards? All the rest are 
obviously frontwards, aren’t they? Let’s try the next character…    

Hmmm…  The "C" is also backwards. But why would some characters be 
frontwards and some backwards?

They wouldn’t.
 
Apparently all of the characters are "backwards" with the least-significant bit

going out to the display first and the most-significant bit going out to the 
display last. Think about this for a while and you’ll remember that a backwards 
entry is also how all of the HIRES color routines work, so we should have 
expected something like this.

Fig. 3-10 shows us the final arrangement of the default character set in the 
bulk file. We can safely assume that all other character sets will behave the 
same way, even though they are located elsewhere in memory.

Now, a visual bit-by-bit check of a long file may turn out to be totally 
worthless. But, it also may be a sure clue that will permit quickly cracking most 
of the program code. It all depends on the program and how creative your 
cracking approach is. 

What you have to do is make up a "Does it fill a program need?" filter that 
might show you something. But, keep trying things that are geared to the 
target program until something leaps out at you and hits you over the head.

There is one ultimate file filter… 

THE ULTIMATE FILE FILTER

Fill the file with water and
see where it leaks.

http://www.tinaja.com/images/spicket1.jpg


70    Enhancement 3

THAT’S
A "2"

MSB LSB

$938F

$9396

NUMBERS
AND

SYMBOLS

UPPER
CASE

LETTERS

LOWER
CASE

LETTERS

$92FF

$93FF

$94FF

$95FF FORMULA TO FIND ANY CHARACTER

STARTING ADDRESS = $92FF + 8 * (ASCII - $20)

(WHERE ASCII = HEX ASCII VALUE OF CHARACTER)

EACH CHARACTER IS STORED AS EIGHT SEQUENTIAL BYTES. 
THE FIRST BYTE HOLDS THE DOTS FOR THE TOP ROW OF 
THE CHARACTER. THE LSB OF EACH BYTE IS THE LEFTMOST 
DOT ON THE CHARACTER. THE MSB IS USED FOR OPTIONAL
SHIFT OR COLOR CHANGE AND IS NOT DISPLAYED. THE 
BOTTOM BYTE IS USUALLY BLANK. EXCEPT FOR LOWER 
CASE DESCENDERS.

Fig. 3-10. How the HRCG character set is stored in the bulk file.

If all else fails, and you are making reasonable progress elsewhere in your 
attack, try changing some or all of the contents of a file and see what changes 
take place in the program.

Usually, the program will bomb on random file changes. But, by finding out
where and when it bombs and, then, zeroing into one or two locations in our 
target file, we can sometimes find out lots of things in a hurry.

Suppose we didn’t know our bulk file was an alternate character set. If you 
made the first eight bytes all $FF’s instead of $OO’s, then all the spaces in any 
message would be white boxes, but nothing else would change. Now, this 
would immediately tell you that the file was a character set and that the first 
entry was a space.

Another neat example of this is to go through the movable object file in an 
Adam’s Adventure and change all the room numbers to $FF. You are now 
carrying everything!

The only unexplained file left in HRCG is the stash starting at $92EB. Now, 
this code seems downright weird and has failed all the other tests. The code 
could be garbage since it is at the very end and since the character generator 
sets all have to start at the same base address.

 
Fill this file with $FF’s and what happens? Nothing. There is no change in 

any part of HRCG that is immediately obvious. So call it garbage. At this point, 
you should have all your stashes and all your bulk files separated and many of 
them fully identified. 



Tearing Into Machine Language Code 71

ATTACK VARIABLES AND CONSTANTS

Back to the code modules…

Start a fresh page on your quadrille pad and head it "LIST OF VARIABLES." 
Now, go through the code modules line by line, and each time you find an 
address used for loading, storing, BIT testing, logic operations, or whatever, 
paint the variables pink and the constants green.

Note that the constants will always have a # symbol in front of them. Page 
Zero addresses will be two hex digits but no #. Absolute addresses will be four 
hex digits, again with no #.

As an example, an LOA $05 puts what is in page Zero memory location 
$0005 into the accumulator. This is a variable. It is a variable since the contents
of $0005 can have any of 256 values ranging from $00 through $FF. 

But, an LOA #$05 puts the value hexadecimal $05 into the accumulator. 
This is a constant equal to "five" of something. Watch for that # symbol! It will 
get you every time if you ignore it.

Our first code module starts at $8ElE. Your variable and constant lines 
should look like this…

As you identify variables and constants, you can start tearing into code. But,
if something isn’t immediately obvious, go on elsewhere. Our first object here is
getting a list of all locations that will get used for target-program variables. 
However, if we can find the meanings at the same time, we are just that much 
further ahead.

The code starting at $8ElF is very easy to read. First, we set the input hook 
to $8E74 and, then, we set the output hook to $8F18. Next, we reconnect DOS
to internalize these hooks. Then, we switch to the full graphics and pick the 
HIRES mode. Continuing, we restore the default display parameters and, then, 
we switch on the graphics mode. Finally, we exit.

How did we figure all that out? Look back at what we know about these 
variables…     

8E1F- A9 74    LDA $#74     (Low address 74)
8E21- 85 38     STA #38        (KSWL) 

$38 and $39 –  are the KSW switches in the monitor.
$36 and $37  – are the CSW switches in the monitor.
$03EA – is the DOS reconnect hook.
$C052 –  is the full screen switch.
$C057 – is the HIRES switch.
Sub $9158 –  is named "Restore Default Parameters."
Sub $9000 – is named "Display Primary."
$C050 – is the GRAPHICS switch.

FROM TABLE 3-1
OR PREVIOUS

RESULTS



72    Enhancement 3

     ADDRESS   MEMONIC                  USE                                     

             -page $00-
$0020    WNDLFT            Left end of scrolling window  
$0021     WNDWDTH       Width of scroll ing window
$0022     WNDTOP           Top of scrolling window          
$0023     WNDBOT           Bottom of scrolling window
$0024     CH                      Text screen cursor horizontal
$0025     CV                      Text screen cursor vertical
$0028     BASL                   Text screen base address low
$0029     BASH                  Text screen base address high
$002A     BAS2L                Dot row HIRES base address low
$002B     BAS2H               Dot row HIRES base address high
$0035     YSAV1                Temporary Y register save
$0036     CSWL                 Character output hook low
$0037     CSWH                Character output hook high
$0039     KSWL                 Keyboard input hook low
$004E    KSWH                Keyboard input hook high
$004F    RNDL                 Keyboard delay low
$00EB  RNDH                Temporary X register save
$00EC                              HIRES base address low
$00ED                              HIRES base address high
$00EE                              Character set base address low
$00EF                              Character set base address high
$00FF                               Temporary accumulator save
                         
             -page $01-
$0104                                 JSR stack source pointer (,X)

             -page $03-
$03EA                                Hook to reconnect DOS

                           Table 3-3   List of Variables for HRCG

Usually, you won’t be so lucky on your first try. We now understand that 
this code module is the initialize portion of HRCG. We also now see what it 
does. We add all the above variables to our variables list, and color everything 
that we understand reasonably well pink for a variable or green for a constant.

Since this module is so obvious, we can also color the right tractor margin a 
solid wide green.

We also found out something new. All keyboard inputs go to $8E14 and all 
character outputs go to $8F18. So, label these locations in red. Do this and two
more large code modules now have labels. Call these KEYBOARD ENTRY and 
CHARACTER OUTPUT.

Continue through the code modules and identify every variable. If you can 
tell exactly what the variable is used for, so much the better. If not, just put the
variable on the list. The variable will most likely crop up later in another code 
module that may clarify its use.

Don’t go overboard on analyzing code. If something is obvious and simple, 
go ahead and crack the code. If it is not, just record all the variables. Do not 
color any variable or constant till you understand what it is used for. But, be 
sure to get all of them on the list.

Pay particular attention to variables inside parentheses. A set of parentheses 
means that you are doing a jump indirect or using one of the indexed indirect  



Tearing Into Machine Language Code 73

Table 3-3 Cont. List of Variables for HRCG

     ADDRESS   MEMONIC                  USE                                     

          -page $8E-

$8E06           Default character set base low
$8E07            Default character set base high
$8E08            jumpto user sub A
$8EOB           Jump to user sub B
$8E42            Pointer to header message
$8E5F            Escape key flag
$8E60            Alternate character set flag
$8E61             Primary page flag
$8E62             Inverse video flag
$8E63             Transparent video flag No.1
$8E64             Transparent video flag No.2
$8E65             Scrolling flag
$8E66             Case flag
$8E67             Character set in use base low
$8E68             Character set in use base high
$8E69             Save of $8E61 while block mode
$8E6A             Save of $8E62 while block mode
$8E6B             Save of $8E63 while block mode
$8E6C             Save of $8E64 while block mode
$8E6D             Save of $8E65 while block mode
$8E6E             Save of $8E66 while block mode
$8E6F             Save of $8E67 while block mode
$8E70             Save of $8E68 while block mode
$8E71             Block mode flag
$8E72     CH  Horizontal cursor position
$8E73     CV   Vertical cursor position
$8F48             Function address file base low
$8F49             Function address fi Ie base high

   - page $92-

$92DF             Start of HIRES pointerfile
$92FF             Default character fi Ie start

   -page$C0-

$C000   IOADR       Keyboard ASCII input
$C010   KBDSTRB   Keyboard strobe reset
$C052   MIXCLR     Full graphics soft switch
$C054  LOWSCR     Page 1 soft switch
$C055   HISCR         Page 2 soft switch
$C057   HIRES         HIRES soft switch
$C050   TXTCLR      Graphics soft switch

   - page $FC-

$FC22   VTAB       Vertical tab from CV sub
$FC24   VTABZ    Vertical tab from accumulator
$FC42   CLEEOP Clear to end of page sub
$FC58   HOME    Home text screen monitor sub
$FC70   SCROLL Scroll text monitor sub
$FC9C   CLREOL Clear to end of line sub



74    Enhancement 3

PAINT THE HOUSEKEEPING YELLOW 

modes. These are among the most powerful commands the 6502 micro has 
available, so it pays to very carefully understand how these are used.

It really gets challenging when you get into the double or even triple 
indirect file manipulations that are involved in the longer Adventure programs.

Don’t worry too much about fuzziness and loose ends. Identify what you 
can and crack what code you can, but keep moving! And, every time you get a 
new piece of checkable information, go back and plug it in everywhere it seems
to fit. The ripple effect when you do this is often astounding.

Ourflag file bytes get identified as you go along. Note that $8FA4 puts a 
$20 in $8E61 to display the primary page and that $8FCC puts a $40 in $8E61 
to display the secondary page. We can then conclude that $8E61 is the page 
flag.

You can continue this reasoning for the other flags. The block mode ends 
up using the bottom half of the flag file.

You should end up with a complete list of all variables, some of the code 
completely cracked, and lots of new hints that will help you elsewhere in your 
attack.

After your list is nearly complete, recopy it legibly in numeric order. Table 
3-3 shows a list of the variables used in HRCG. Use this as an example.

Next, go back through the code. Every code line that uses an implied 
addressing mode should be painted yellow once you understand it. Implied 
mode instructions use a single op code byte and are not qualified by a value or 
an address. Examples are INX, DEY, TXA, CLD, SEC, TSX, and so on.

If you happen to have code that uses the stack to hold a value for you, this 
will show up with a PHA, some operations, and, then, a restoring PLA. Show 
these in yellow just like any other implied instruction. But if, and only if, the 
PHA and PLA are irrevocably paired as a temporary store, connect them with a 
yellow bracket.

Like this… 

8E87- Bl 2A              LDA ($2A) ,Y
8E89- 48                   PHA
8E8A- E6 4E            INC $4E
8E8C- DO OB          BNE $8E99
8E8E- E6 4F            INC $4F
8E90- CA                 DEX
8E91- DO 06           BNE $8E99
8E93- 49 7F            EOR #$7F
8E95- 91 2A            STA ($2A),Y
8E97- A2 50            LDX #$50
8E99- 2C 00 CO     BIT $COOO
8E9C- 10 EC           BPL $8E8A
8E9E- 68                 PLA
8E9F- 91 2A            STA ($2A),Y
8EA1- BA                 TSX



Tearing Into Machine Language Code 75

( ) Look for built-in diagnostics.
( ) Use breakpoints.
( ) Try flowcharting.
( ) Attack indirect addressing.
( ) Add hooks.
( ) Gain partial control.
( ) Use the cassette.
( ) Single step and trace.
( ) Chip away at it.
( ) Attack the fundamental subs.
( ) Ask for help.
( ) Use partial boots.
( ) Detect changes.
( ) Alter files.
( ) Put program on an assembler.
( ) Attack a similar program.
( ) Decipher special codes.
( ) Try something easier.

WRITE A SCRIPT

CUSTOMIZE YOUR ATTACK

Once you understand how a yellow line is used, add comments in brown to 
explain it. Should you get paired PHP and PLP commands, these should also get
bracketed in yellow, but only if they always work together.

What you are after here is to have a color on each and every line, a 
comment on each and every line, and, on the right margin of the page, a solid 
green area for each module that is understood, and a solid yellow area for each 
stash that is cracked. 

Where you are right now depends on your experience and how tough and 
how long the program is. If you try this method on a target program that is 
only a few hundred words long, you should be done by now. You should not 
only have met your limited goal, but should have the rest of the entire program
completely cracked. 

   

Hopefully, you will know what to do next at this point. Go on your own 
vibes in the most obvious direction.

On longer programs, the chances are there is lots of white space remaining. 
These white spaces point to uncracked code and unbroken stashes and bulk 
files.

The next step is to write a script. Explain in people-type words what each 
and every known stash, bulk file, and code module does.

A complete script of HRCG appears in Table 3-4. Use this as an example. If 
you have to leave blanks for now, do so.

Obviously, all machine language programs are different. Some will involve 
themselves a lot with DOS. Others will use only the HIRES screens for game 
actions. Still others will interact with a host BASIC program, and so on.

What you now want to do is customize the attack to fit the program. How 
you do this is up to you. Here are some things I sometimes try… 



76    Enhancement 3

      ADDRESS                  COMMENTS                                                   

$8DFF             –

$8E02             –

$8E05             –

$8E06-$8E07   –

$8E08-8E09    –

$8E0B-8E0C   –

$8E08-8E1E   –

$8E42-8E5C   –

$8E42-8E73   –

Hard entry point. Clears screen and prints 
header, connects HRCG hooks.

Soft entry point.Connects HRCG but does not 
clear screen.

Version number x 10.

Base address of default character generator set. 
Defaults to $92FF.

User subroutine A starting address called by 
option Y. Defaults to subroutine return RTS.

User subroutine B starting address called by 
option Z. Defaults to subroutine return RTS.

Hard entry routine. Sets I/O hooks, then
 reconnects  DOS. Switches to HIRES full screen. 
Restores DOS and  default parameters. Displays 
primary. Switches to graphics.

Stash holding ASCII-coded title and version.
Used during  cold entry.

Stash holding all working flags-

     $8E5F - $80 if previous key ESC
                    $00 otherwise
     $8E60 - $80 if alternate characters
                    $00 if defau It characters
     $8E61 - $20 if page 1 primary
                    $40 if page 2 pri mary
      $8E62 - $00 if normal video
                     $7F if inverse video
                    $80 if overstrike video
                    $CO if complement video
      $8E63 - $80 if transparent mode
                   $00 otherwise
      $8E64 - $60 if transparent mode
                   $00 otherwise
      $8E65 - $00 if scrolling
                    $FF if wraparound
      $8E66 - $00 if caps lock
                     $80 if lower case
                     $CO if single capital
      $8E67 - Base add low of set in use
      $8E68 - Base add high of set in use

      $8E69 - Save of $8E61 while block
      $8E6A - saveof$8E62 while block
      $8E6B - saveof$8E63 while block
      $8E6C - Save of $8E64 while block
      $8E6D - Save of $8E65 whi Ie block
      $8E6E - Save of $8E66 while block
      $8E6F - Save of $8E67 whi Ie block
      $8E70 - Save of $8E68 while block

Table 3.4      Complete script of HRCG.



Tearing Into Machine Language Code 77

      ADDRESS                  COMMENTS                                                   

$8E74-8EAC   –

$8EAD-8F17   –

$8F18-8F27   –

$8F4S-8F7D   –

$8FS6-8FA3   –

$8FA4-8FA9   –

$SFAA-8FCB   –

$8FCC-8FD1   –

$8FD2-8FDE   –

$8FE2-8FEC   –

$8FED-900C   –

$900D-901A   –

$901B-9022   –

     $8E71 - $00 if normal display
     $FF if in block mode
     $SE72 - CH horizontal position
     $SF73 - CV vertical position

Enter HRCG via keyboard hook. Save A, X, 
BASH, and BASL. Debounce keyboard and flash 
cursor till key is pressed.
Reset keyboard strobe.

Check keyboard for ESC or CR. If a CR, process 
via sub $92SD. If an ESe, process I, L K, M for
cursor motions. Then, clear EOL if E or clear EOS if F. 
Process A, B, e, and D cursor motions.

Enter HRCG via output hook. Save A, X, and Y. If 
a number and preceded by ESC, change characterset
number via $SFS6. If a control command, clear Carry 
if a function and set Carry if an option. If a letter from 
@ to Z, process by getting address from stash $8F4S
and doing an indirect jump.

Stash of 27 addresses for menu selections A-F. 
Selection @ does an immediate RTS. Address picked
by $8F28.

Function A. Alternate character set. If a number
from 0-9, calculate new base address and store in 
$8E67.

Option A. Put #$20 in flag $8E61 to switch to 
primary page 1.

Function B. Begin block display if not already there. 
Put$#FF into flag $SE71. Move flags $8E61 through 
$8E67 to $8E69 through $8E70 as temporary save. 
MoveCV and CH into flags $8E72 and $8E73.

Option B. Put #$40 in flag $SE61 to switch to 
primary page 2.

Function C. Carriage return. If not below bottom, 
do CR via $9204.

Option C. Complement display by making flag 
$8E63 a #$CO and $8E64 a #$00.

Function D. Block display off. If in block mode, 
move flags back to $8E61-8E68. Reset block flag 
and CH flag to zero, CV flag to bottom.

Option D. Display primary. Switch to page One.
Check primary flag and switch to primary flag page.

Function E. Clear HIRES page to EOL using$928D. 
Then, clear text page

Table 3.4, continued… Complete script of HRCG



78    Enhancement 3

      ADDRESS                  COMMENTS                                                   

$902B-903F   –

$9040-9047   –

$9048-904F   –

$9050-9057   –

$9058-9072   –

$9073-907A   –

$9076-9082   –

$9083-908D   –

$908E-9095   –

$90%-909E   –

$909F-90AD   –

$90AE- 90BA   –

$90BB-90C2   –

$90C2-90C8  –

$90CY-90D5   –

$90D6-9103   –

$9104-9124  –

Function F. Clear HIRES page to EOS with $927A. 
Then, clear text page using monitor CLEOS.

Function H. Backspace. Go left one character if 
entry at $902B. If screen left, go up one line.

Function I. Set inverse video flag by putting #$75 
into $8E62.

Function K. Set caps lock flag by putting #$00 
into $8E66.

Function L. Set lower-case flag by putting #$80 
into $8E66. Unsupported function M. Apparently a 
scroll diagnostic, once reached by CTRL-S, CTRL-C

Function N. Set normal video flag byputting #$00 
into 8E62.

Function O. Set option flag by putting #$40 into 
$8E60. Next key will complete option command.

Option O. Pick overstrike mode by #$00 into 8E63 
and #$00 into 8E64.

Function P. Clear HIRES page via $9270 and text
 page via monitor HOME. Note that an image of 
the HIRES screen is put on text page 1.

Option P. Pick print mode by putting #$00 into 
$8E63 and $8E64.

Function Q. Home cursor inside text window. 
Move upper-left values toCH and CV. Then, 
reset text screen via monitor VTAB.

Function R. Reverse overlay by putting #$CO into 
$8E63 and #$60 into $8E64.

Function S. Shift next character by putting #$CO 
into flag $8E66.

Option S. Pick scroll mode by putting #$00 
into flag $8E65.

Option T. Set transparent mode by putting #$80 
into $8E6 3 and #$60 into $8E64.

Function V. Text window, upper left, by resetting 
WNOLFT and WNOTOP after check for on-screen 
values. Transfers vertical position to CV flag if not in 
block mode.

FunctionW. Text window, lower right, 
by resetting WNDWIDTH and WNDBTM.
after check for on-screen values.

Table 3.4, continued… Complete script of HRCG



Tearing Into Machine Language Code 79

      ADDRESS                  COMMENTS                                                   

$9125-912A     –

$912B-914E     –

$914F-9151     –

$9152-9177    –

$9178-917A    –

$917B-9196    –

$9197-91C4    –

$91C5-91F7    –

$91F5-9218    –

$9219-9220    –

$9221-926F    –

Option W. Set wrap mode by putting #$FF into 
$8F65.

Function Y. Open to full text screen by putting 
#$00 into WNDLFT and WNDTOP and #$28 
into WNDWDTH and $#18 into WNDBOTM. 
Save as CH and CVflags if not block mode.

Option Y. Call user subroutine A by jumping to 
jump command stored at $SE08. Defaults to RTS.

Function Z Restore defaults. Reset all flags to 
#00. Set full text window. Pick default character 
set. Display primary page. Reset user subs to RTS.

Option Z. Call user subroutine B by jumping to 
jump command stored at $8EOB. Defaults to RTS.

Begin character entry. Exit RTS if option flag 
set. Check case mode and change to upper case or 
reset shift flag if needed. 

Continue character entry. Calculate character 
location and save as $EE and $EF. Calculate screen 
base address location and save as $EC and $ED. 
This is the top dot row for any character position. 
The running dot row address gets held in $2A and 
$2B.Then, the character is saved on page One text 
screen. Like so…

         $28-29 - text screen base address
         $2A-2B - HIRES dot row address
         $EC-ED - HIRES base address
         $EE-EF - Character-set base address

Continue character entry. For eight dot rows, 
get the character dots and inverse if needed. Get
the dots already on the screen; then, AND or OR
with character dots if needed. Then, return result
to the screen. Next, calculate the address of the 
next lower dot row and repeat till all of the 
characters have been entered.

Move cursor. Go one to the right unless at the
extreme right of the window. If a CR is needed, go 
down one line unless at extreme window bottom.
If at bottom, check flag for scroll or wraparound, 
and continue.

Wraparound mode. Set WNDTOP to top of text 
window. Do a monitor VTABZ to recalculate base 
addresses.

Scrolling mode. Dot line source is$2A to $2B.
The destination is address

Table 3.4, continued… Complete script of HRCG



80    Enhancement 3

      ADDRESS                  COMMENTS                                                   

$9270-9279    –

$927A-928C    –

$928D-92CA   –

$92CB-92DF   –

$92DF-92EA   –

$92EB-92FE   –

$92FF-96FE   –

$EC-$ED. Destination is eight dots above source. 
Starting at the top of the screen, scroll 
downward, loading from ($2A) and storing
 at ($EC). The Y register handles CH  
position, stepping down from WNDWDTH 
downward. X register handles the position 
of eight rows per character. One entire dot 
row is entered, then another until done. After
a line gets remapped, the base address of the 
next line is calculated, making the old source 
the new destination, and calculating a new 
source. Continues until the entire screen is 
mapped. The bottom line is cleared via $8E63.

Clear screen. Set CV toWNDTOP and CH to 
WNDLFT and then continue via $927E.

Clear to end of screen. From present CH and CV, 
clear to EOL via $9291 as often as needed to 
empty the screen.

Clear to end of line. Foreight dot rows. calculate 
address, then remove character from screen. 
Inverse background if needed. Y register works 
from CH to WN DWDTH doing one dot row at a
time. X register handles dot rows, working from 
top of character down.

Calculate HIRES base address. Divide CV by two. 
Go into the table in $92 DF-92 EA and lookup 
base address value. Process this value and store 
in $2A and $2B.

A stash of table lookup values used to calculate 
HIRES base addresses needed by $92CB or $92CD.

Apparently unused garbage.

Bulk file of default character set. Holds the dot 
patterns of all ASCII characters. The seven least
significant bits hold the horizontal dot pattern IN 
REVERSE for one dot line. Eight successive bytes 
hold the dot pattern for one character, arranged 
from top to bottom. Locations $92FF-93FE hold 
numbers and symbols. $93FF-94FE hold upper
case alphabet, and $9SFF-96FE hold lower-case 
alphabet. Bottom dot row is blank except for any
descenders. 96 characters total.

If you are attacking a very complicated target program, chances are the 
original author may have had some of the very same problems you did. And,    

Table 3.4, continued… Complete script of HRCG



Tearing Into Machine Language Code 81

if he was smart enough, he just, possibly, may have built in some problem 
solving diagnostics.

For instance, the Adam adventures have a "Possible" and a "Did" tracing 
debugger that you can access with two keystrokes. Zork includes a hook that 
lets you stop the action after each code module, and print out whatever you 
like, such as the files just accessed. Zork will also give you a complete list of 
rooms with just a few keystrokes. A few minor changes to Wizard and the 
Princess and you get a guided picture tour of all the rooms.

Be on the lookout for any diagnostic helps that may be built into the 
program. Then, see just how you can tap them.

Breakpoints are another way to tackle a program. What you do is reach into 
the target program at a place where you want it to stop, and insert a $00 or 
BRK command. When the Apple reaches this point in the program, it will stop 
and immediately do a software interrupt.

What happens next is decided by which monitor ROM you have in use. If 
you have the old ROM, the break puts you in the monitor and displays all of 
the working registers. If you have the autostart ROM, the BRK command does a
jump indirect to the address contained in locations $03Fo (low) and $03Fl 
(high). You can go from this address into the monitor, or else, directly to 
another snoop program that spells out what each and every pointer and 
indirect address is up to.

There is one clinker in the works when you use BRK. You might need the old
ROM to gain control of the program so that you can change $03FO and $03Fl, 
and then switch to the autostart one. A "protected" program under autostart 
will never let you get down into the monitor or change any locations. Use of 
either ROM card with a hardware change over switch often can get you out of 
this bind.

A breakpoint could be used as anything from a scalpel to a cannon, 
depending on what you want to do and how large a hole you want to blast.

Drawing a flowchart may help you. I don’t use that method too much since 
it sounds like something the dino people would want you to do.

The addressing modes that give the 6502 microprocessor its extreme power
are the indirect ones. These include jump indirect, indirect indexed, and the 
rarely used indexed indirect. All of these are identified by an address in 
parentheses following the mnemonic. A lot of setting up is needed to use these 
locations. Most often, an address pair on page Zero has to be set up ahead of 
time.

Understanding the real address used for an indirect instruction can be the 
key to cracking tough codes. It pays to spend lots of time being sure you know 
exactly where these addresses are going to and why they are doing so.

Things really get interesting when you get involved in double and triple 
indirect addressing, as is common in adventure programs. The code may go to 
some base address, pick an address pair out of a file there, and use that address
as an indirect pointer in another instruction. If the files happen to be longer 
than 256 bytes, then double indirect is needed, rather than a single.

Patience and practice are essential to cracking indirect codes. If all else fails, 
replace the indirect op code with a BRK command. On the break, get into the 
monitor and check the locations used to hold the indirect address.

Hooks are attachments you make to the program to gain partial control. 
You might write your own small "host" program and let it "borrow" subroutines 
off the target program. This is one possible way to dump files off protected disk



82    Enhancement 3

tracks. Once you are able to use and control key subroutines in your target 
program, you are well on your way to solving everything else.

The tape cassette is often ignored. Yet the tape system is a very valuable 
tool. One "protection" scheme used involves putting a program in the same 
space where Apple DOS 3.3 would normally reside. A custom DOS is then put 
somewhere else and there is no immediate way to save the program entered 
under DOS 3.3, since booting the DOS 3.3 overwrites and destroys the code.

But, the cassette doesn’t care. It can save any code in any location at any 
time. One thing you can do is move the target code down in memory below 
DOS, save it to cassette, and then boot the DOS. Save this lower version on 
DOS and, then, add a "move" command that puts it back where it wants to sit. 
Cassettes are also useful in upgrading between various DOS versions. They are 
slow, unreliable, and unwieldy, but they just might work if all else fails.

The single step and trace features on the old monitor are very useful on 
some parts of some programs, particularly if you dump them to a printer. But 
watch out that you don’t try to trace a delay loop, such as the one that waits 
for a disk drive motor to come up to speed. The trace operation slows things 
down some 10,000 times from normal speed, so a two-second delay will take 
several days and miles of paper to print. Sometimes you can break into the 
loop, reset the counter locations, and continue. Other times, you’ll have to 
combine single step or trace with breakpoints. 

Run the code till you hit the breakpoint, and then single step from there. 
Tracing to a printer is one very good way to crack indirect addresses to find the
files that they work with.

Beware of tracing parts of programs that read the screen, since tracing and 
displaying can interact. For instance, a clear-to-end-of-screen will hang during a
trace, since trace keeps resetting the screen locations. If you are printing, be 
sure to defeat the screen echo during these times.

Another custom attack method is to chip away at the target. Your goal may 
seem to be hopelessly buried in the middle of stuff that seems so complicated 
that it will take you forever to understand. If all else fails, attack the easy stuff 
on the outside. Do this even if the easy stuff seems to have nothing at all to do 
with your goal. The parts of the code that outputs characters or inputs data 
areusually easy to read. Continue carving away on anything that looks like it 
might shake loose. What this indirect attack does is reduce the size of what is 
left to a point where you can hack at it directly.

A big plus for the indirect attack is that it can show you the program 
author’s style and where his head is at. Does he use self-modifying code? How 
does he handle multiple choice addresses? Does he use the indirect commands 
effectively and gracefully? Is he using mostly branches, or mostly jumps? How 
elegantly or how clumsily does he handle 16-bit addresses and long files? Does 
he extensively use the existing monitor, DOS, and BASIC subs, or is he 
reinventing the wheel? How clean is his organization? Is the program designed 
from the ground up for an Apple, or was it obviously modified from a program 
originally designed to run on some inferior machine? 

Answers to these questions can simplify very much the cracking of the rest 
of the code, since most decent programmers tend to be consistent in how they 
do things. If the code seems ridiculously obscure, attack the fundamental 
subroutines. These subroutines are the ones that won the popularity poll (the 
ones with all the dots). The subs to hit first are those that will not call any other
subroutines, but will go ahead and do direct and obvious things. 

Common tasks of fundamental subroutines include searching a long file for 
a value, calculating an address, or making a hex-to-decimal conversion.



Tearing Into Machine Language Code 83

Once you understand these fundamental subroutines, you do not have to 
go through them each time they crop up, because you know what they do. If 
you create meaningful names for these fundamental subroutines and they will 
help you a lot. Then, "ripple" this new information back on through.

Asking for help is an obvious thing to do. There is nothing more infuriating 
than having an 8-year-old boy, just in from off the street, make some casual 
comment that completely sums up what it just took you months to find out the
hard way. So discuss the target program and its attack.

 
Don’t only do it with "experts," but rap about it to anyone who will listen. 

Chances are their heads are elsewhere and might put things in a new light.

The python force feeder takes some special hardware, but it can be very 
effective. A force feeder is some hardware and software modifications that 
include a super-powerful bus driver, say a 74S245, or maybe three of them in 
parallel. When you tell it to do so, it substitutes its own code for what the 
computer is supposed to be working with.

For instance, even the old monitor ROM can’t help plowing part of the 
display page, the first few keybuffer locations, and part of page Zero when it is 
activated. A sneaky programmer can hide things in plowable locations. But not 
so with a force feeder. Besides being able to force a monitor reset any time you 
like, a force feeder can substitute anything at any place in the program. It can 
also move copies of plowable locations to unplowable ones for analysis.

As a much simpler example of force feeding, consider the "top display line" 
copy protection hoax. What you do is switch to HIRES and, then, put a key 
jump or some other "magic" code that you want "hidden" on the top line of 
text display page One, starting at location $0400. This code is called early in 
the program and the program bombs if the code is not there. Naturally, the 
code gets erased immediately after use.

This, in theory, makes any messing with the program impossible. Any 
tampering at all will scroll up the display page and destroy the magic code. 
Sounds both bulletproof and infuriating. In reality, this is only a "seven-second" 
copy protection. What you do is force feed the Apple by making it display only 
text page One, and this "hidden" code actually leaps out at you, shouting to be
heard. To force feed the page One display on older Apples, remove integrated 
circuit F14 and ground pin lo. 6 of the socket at Fl4. The hidden bytes will 
appear in Apple video-screen code, rather than op code, but if you got this far, 
that just adds to the fun. Similar force feeding games can be played with most 
of the Apple soft switches that are needed for analysis or degbug.

Another handy debug trick is the partial boot. Instead of letting the target 
program completely boot, you only let it go so far and, then, analyze what you 
have. This catches code modules before they are moved to cover DOS, and so 
on. For instance, the program, Pool 1.5, is generally considered to have excep› 
tionally good, or "three-hour," copy protection. But, use a partial boot and the 
"three-hour" protection drops down to a much more convenient "eighteen› 
minute" protection.

 More elegant boot tracing can also be done. The trick here is to carefully 
watch the disk drive with the cover off and time the different parts of the 
loading and protecting process. By the way, there’s one sure-fire way to read 
any disk at any time. Just glomp a logic analyzer with a 6502 personality 
module in it, onto the CPU and you are home free. Unfortunately, you can buy 
a dozen Apples for the price of one better grade logic analyzer, so this ultimate 
weapon does not see much use.

Change detection is yet another attack method. However, I have not fully 
explored this one. What you do is dump part of memory, run a portion of        



84    Enhancement 3

the target program, and then see what changed. By finding out how, when, 
and why that change took place, you can often gain all sorts of insight into 
what is going on.

Some day, I would like to build the ultimate change detector. This would 
take a DMA modification to the Apple that would let a second Apple or some 
type of dedicated hardware give you an instant and separate picture of memory
activity while the main program was running. One display would show what 
the program was doing, while the second would show you each and every 
memory location of interest. Ideally, such a program should present any 
location or any block of locations that you want and would clearly identify 
them. By using this ultimate change detector, you could actually watch the 
program while it was doing its thing.

A variable-speed feature would also be nice here, so you could slow down or
stop key activities without waiting forever for them to get through a delay loop.

We’ve already seen how altering files can tell you lots of things in a hurry 
about your program. Sometimes you are shooting in the dark since some file 
locations may only rarely be used or might be used only in an obscure way. File
changing is certainly worth a try.

If you are going to change the target program or interact with it, it might 
pay to put the program on your own assembler and create your own source 
code. This lets you add your own hooks and make changes of your own 
choosing inside the target program. The EDASM on the DOS Toolkit is ideal for 
this. Assembling your own source code backwards from the object program is 
quite a hassle, though, and you shouldn’t try it unless you have pretty much 
cracked everything else. Disassembler programs, such as RAK-WARE’s DISASM, 
are also available that will "capture" code for your favorite assembler.

Sitting on your program is often overlooked. Just walk away from the attack 
for hours or days, and things that should have been obvious all along will leap 
out at you. Let your subconscious work on the puzzles that are holding you up.

Another thing that can help is to try attacking a similar program, either by 
the same author or by another that does the same thing in a simpler or easier 
to understand way. The insights you get from one program will help you attack
the other program.

Deciphering special codes may be needed in longer adventures. These codes
are more often used to make code more compact than they are to purposely 
"hide" the meanings of what they hold. The trouble is that most compaction 
schemes also do a most thorough job of masking everything the file holds.

For instance, in Zork, the ASCII strings are compacted so that two bytes 
hold three characters. Some newer adventures use paired letter or similar codes
to remove the redundancy from text messages so that long text files will fit 
inside the machine. This is how the Collossial Cave adventure from Adventure 
International manages to get everything that once demanded a mainframe dino
into a 48K Apple without needing repeated disk access.

About the only way to attack these codes is to go into the code modules 
that decipher them. Then, decipher the decipheree. Single step, trace, or 
breakpoint access code modules till they show you how to read the file. Usually,
there will be some obscure command or program feature that will do things a 
lot faster or simpler than the others. Trace this command or feature out and let 
it crack the code for you. The last resort, of course, is to give up. Go back and 
attack something that is simpler.

My first machine language attack of a big program was Adam’s Pyramid      



Tearing Into Machine Language Code 85

CONVERGE ON YOUR GOAL

WRITE IT DOWN!

The HRCG scroll hook is at $9214.

$9215 holds the address low of           
the scroll subroutine.    

$9216 holds the address high of           
the scroll subroutine.    

The existing scroll routine starts    
at $9221 and ends with $926F.               

of Doom. This was done on a wilderness firetower using nothing but a 6502 
pocket card. It literally took all summer, but it led to this attack method, and 
there is no better way to learn machine language programming.

Just as soon as you have the structure pretty well defined and as soon as you
have cracked most of the code modules, return to your original goal and solve 
that particular problem.

Our goal in HRCG was to find the scroll hooks. By now, they should leap out
at you. Just as the cursor is about to go off screen at $9208, a check is made to 
see whether scrolling or wraparound is to be used. If scrolling is active, $9213 
does a jump to the scroll subroutine starting at $9221. Specifically, $9214 will 
hold the low address and $9215 will hold the high address of the scrolling 
subroutine.

Just change these hooks enough so that you can use your own scrolling 
routine. Try it!

Easy, wasn’t it? If not, go through a few practice target programs and see 
how fast and powerful the tearing method can be.

Surely you don’t want to go through all this a second time on the same 
target program. So, carefully write down everything you learned in some form 
that works for you.

Make a clean copy of your analysis on the second listing you made. Also, 
make a neat new table of variables, a new cross-reference, and write a complete
new script. Put most of this information onto disk so that you can have 
printable and updateable copies for later use. Use your word processor.

The insight that you have now will be long forgotten in a month. Be sure 
that you will be able to later recover what you already have done, and will be 
able to do so both quickly and hassle free.

Resist the urge to pull a "EUREKA! I have found it!"and run off with only 
your limited goal met. Do so, and the key information will disappear down the 
tube somewhere and all will be lost.

The following outline sums up all the steps involved in tearing into machine 
language code. Go back over them, and you’ll find three parts to the attack. 
First you  prepare yourself, then you attack the target program, letting it 
reveal itself through its form and structure. Finally, you follow upthe attack to 
reach your goal.



86    Enhancement 3

TEARING INTO MACHINE
LANGUAGE CODE

PREPARATION

  ( ) Assemble the toolkit.
  ( ) Grok the program.
  ( ) Go to the horse’s whatever.
  ( ) Set a limited goal.
  ( ) Empty the machine.
  ( ) Find where the program sits.
  ( ) List and hex dump the program.

ATTACK

  ( ) Separate action from bulk files.
  ( ) Paint subroutine returns green.
  ( ) Paint subroutine calls orange.
  ( ) Paint absolute jumps pink.
  ( ) Paint relative branches blue.
  ( ) Separate modules and stashes.
  ( ) Identify files and stashes.
  ( ) Attack variables and constants.
  ( ) Paint housekeeping yellow.

FOLLOW UP

  ( ) Make a list of variables.
  ( ) Write a script.
  ( ) Customize the attack.
  ( ) Converge on your goal.

Here is a quick summary of the tearing method…

Practice makes perfect. Try it.

An obvious second program for your tearing attack would be FID on the 
DOS System master diskette. Try this one on your own and see how far you 
get. As a specific goal, find out how to use the code that tells you how much 
space you have left on a diskette.



Tearing Into Machine Language Code 87

WILL  THE  REAL  LISTING  PLEASE  JUMP  OUT?

There will be times when the disassembler in the Apple monitor lies like a rug.

A disassembler always assumes it is working with valid op codes. It starts witth the first 
code byte it finds and, then, decides what operation the Apple is to to. Depening on the 
particular op code, one, two, or three byte, will be needed to complete the operation.

For instance, the CLC or clear command is an implied addressing instruction handled 
with a single byte. No further information is needed. The LDX #05 immediate command 
takes two bvtes, one to tell you what lo do and one to answer "how much?" The STA 
$4050 command uses absolute addressing and takes three bytes, one to tell us what to do 
and two bytes to answer "Where?" by giving us address low and, then, address high values.

Thus, a disassembler will automatically jump one, two, or three bytes to get to the start
of the new instruction. The disassembler always assumes that it is working with    
valid code from a legal starting point. 

If either the starting point is wrong or if what is being disassembled is not legal, the 
lister starts lying. 

Suppose we have these bytes stashed in memory…

$0800- 80 8D AD 02 A5 18 EA

Here is what you get if you try to disassemble this code from various starting points…

$0800- 80                 ???
$0801- 80 AD 02         STA $02AD
$0804- A5 18               STA $18
$0806- EA                   NOP

$0801- 80 AD 02        STA $02AD
$0804- AS 18              STA $18
$0806- EA                   NOP

$0802- AD 02 A5        LDA $A502
$0805- 18                     CLC
$0806- EA                   NOP

$0803- 02                     ???
$0804- AS 18                STA#18
$0806- EA                    NOP

We see that we get a different disassemblv every time, depending on where we start 
from. Which one is correct?

The correct disassembly is the one that begins with the first valid op code on tbe list. 
The first valid op code is often pointed to elsewhere in the program bv a jump branch. call,
or an external entry point.

You can expect the "lister" to lie’ about one-half of the time when it comes out of a file 
or dead code and starts into legal code.

Usuallv the "lister" will correct itself after two or three wrong entries. So, you usually 
have to worry about the first few entries into valid code.

If what you have just listed seems dumb, try listing from one above or one below where
you think the legal code starts. Most of the time, there will only be one rational place anci 
the valid code will leap out at you. But remember that the "lister" will only tell the truth 
when both true code and a true starting point to work with.



88    Enhancement 3

SEEDS  AND  STEMS

 
To extend the life of any game 
paddle connector that gets used a
lot, plug your paddles into a 16 
pin, premium machined contact 
DIP socket. Then plug this socket 
into J14 on the Apple.

It pays to put sockets on all your 
joysticks, paddles, and whatever, 
as well. Should any pin bend or 
break, repairs are far easier.

SEEDS  AND  STEMS

 
To edit a comment line in EDASM
without having holes chopped in 
it, you can use the "T" command 
to eliminate all tabbing.

To restore EDASM to normal, you 
can either reboot, or else, use "Tl 
4, 19, 29" commands.

All of your tabs must be restored 
before assembly.


