
The C02 Pocket-SBC

A Pocket-sized 65C02 based computer

Basic Description:
 The design goals are based on proving some changes to what I would call a “Classic 6502
System” from a hobbyist view. Specific Design Features are outlined below:

1- A simple and flexible hardware design by utilizing a single PLD Glue chip
2- Using a NXP SCC2691 UART which is a departure to the 6551
3- A new Reset chip that provides active high and low signals (UART pre-req)
4- A NMI Panic switch for debugging capability – saves CPU state, restores I/O
5- A Bus expansion connector for additional I/O devices and capabilities

2

 Having discovered a hardware bug in the recently released W65C51 ACIA, it was time to move to
a new UART for use as a Console for interacting with the system. BDD (from 6502.org fame) had
been telling me for quite a while to move to a NXP UART. This new board design uses a NXP
SCC2691. It also incorporates a FTDI USB-to-serial interface that is in a DB9 connector housing. I
have been using these interface devices for a while and it made sense to include this as part of the
design for the new SBC. This allows direct attachment to a USB port on any modern PC to be
used as a Console. After trying several PC Terminal programs, I’ve settled on using ExtraPutty.

 The NXP UART adds the requirement for an active high Reset signal in addition to the active low
Reset signal that 65XX chips use. After some research, I settled on the Texas Instruments
TL7705B. It provides a flexible delay time for holding the Reset lines active via a RC network and
has open collector outputs for both Reset signals. It also supports a manual reset trigger. I opted
for a Maxim DS1813 Reset chip to de-bounce the NMI line for the Panic button. The Reset timing
of the TL7705B is set to be longer than the DS1813, which is fixed at around 350ms. This is done
to ensure the NMI signal is not active after the Reset signal ends on power up.

 To maintain a flexible design, I’ve implemented a single Glue chip using Atmel’s ATF22V10CQZ
PLD. This chip provides the qualified Read and Write signals for memory access, the UART and
any other I/O devices that are Intel compatible. It also provides the chip selects for the RAM and
EEPROM as well as the UART, plus four additional I/O selects available via the Bus expansion
connector. All I/O selects are 32-bytes wide, which allows for a wide range of I/O devices.

 The memory used for the design is an Alliance AS6C62256 32KBx8 Static RAM and an Atmel
AT28H256 32KBx8 EEPROM. These are very common chips, readily available and the EEPROM
can be programmed insitu with some simple programming. The remaining bits of the design
includes a half-size 6MHz Oscillator to drive the CPU and PLD clock lines, a 3.6864MHz Crystal
for the SCC2691 UART, a 750ma Poly-fuse to protect the board / components and a fairly large
number of bypass capacitors to ensure quiet and stable board operation.

 The schematic for the Pocket-SBC was done using ExpressPCB and the 4-layer PCB layout was
also done with ExpressPCB. I opted to use their MiniBoard Pro service which provides 3 high-
quality 4-layer boards with solder mask and a single top side silk screen. A tight layout using all
DIP parts just fits on the board which is limited to 350 holes and a size of 2.5” x 3.8”. The final PCB
layout came in at 349 holes!

 I spec’d high quality parts for the board and used high quality sockets for all DIP parts as well. The
board has proven to be stable and reliable running at 6MHz. This limit is imposed by the NXP
SCC2691 UART, as it is an older UART from Philips. While 6MHz may not seem very quick, note
that most early 6502 computers ran at 1MHz. Even the famous Atari vector-based Tempest Arcade
Game used a 6502 running at 1.8MHz. So, this small board can do quite a bit standalone and
adding other hardware devices and supporting software will extend that capability.

3

Hardware Configuration:
 The Hardware Configuration is defined by the logic programmed into the PLD Glue chip. Back in
the latter half of the 1980’s, I made a simple design for the Rockwell R65C02. This used a few
74xx Logic chips for Glue logic and worked well. I did a new implementation of this about four
years ago using WDC’s W65C02 and 74HCxx logic chips. Based on this, I have my own (logical)
view on how to arrange the memory / hardware map for the 65C02, which is limited to 64KB total
addressing which includes all memory and hardware devices.

 Some specific features of the 65C02 dictate that memory exists at the beginning of the memory
address space, like Page Zero and the Processor Stack on Page One. It also dictates that some
form of ROM exists at the end of memory address as the hardware vectors for Reset, NMI and IRQ
are the last 6 addresses of the 64KB address space. To keep this simple, I split the address range
between RAM and ROM, 32KB each. As the first 512 bytes need to be RAM for basic system
operation, the upper 512 bytes was mapped for ROM and I/O devices as follows:

1- $0000 - $7FFF = RAM
2- $8000 – $FDFF = ROM
3- $FE00 – $FE9F = I/O

a. I/O-0 = $FE00-$FE1F (expansion bus)
b. I/O-1 = $FE20-$FE3F (expansion bus)
c. I/O-2 = $FE40-$FE5F (expansion bus)
d. I/O-3 = $FE60-$FE7F (expansion bus)
e. I/O-4 = $FE80-$FE9F (SCC2691 UART)

4- $FEA0 - $FFFF = ROM

 Using the above as a reference, I tend to grow System RAM usage from the bottom up and ROM
usage from the top down. This provides a larger contiguous memory space which allows for larger
user programs. In the initial release, the BIOS uses the first 1024 bytes for Page Zero, Processor
Stack, Console FIFO buffers and Vector, Configuration and Buffers for Monitor routines. I’ve also
reserved the second 1024 bytes for future expansion. This provides for user RAM starting at $0800
and extending to $7FFF, or 30KB. The ROM side is organized similarly. The top 2KB is for BIOS
and I/O, followed by 6KB for the base Monitor. This leaves 24KB for additional ROM based
software.

The Pocket-SBC requires a single regulated power supply of 5.0 Volts DC and should be a
minimum of 1.0 ampere of available current. Note that the USB Console port does not provide
power to the board. At idle operation, the Pocket-SBC draws approximately 45ma of current, most
of this drawn by the PLD chip. Also note that the FTDI USB to UART interface gets power from the
USB connector on the PC, not from the SBC power supply.

4

Software Configuration:
 The Initial Software release for the Pocket-SBC consists of two pieces of code:

1- The C02 BIOS which resides in ROM. Reserved range from $F800 - $FFFF (2KB)
2- The C02 Monitor which resides in ROM. Reserved range from $E000 - $F7FF (6KB)
3- The rest of the ROM is free for additional programs from $8000 - $DFFF (24KB)

 As the only I/O device on the Pocket-SBC is the UART, the current BIOS provides full support of
the UART’s Transmit and Receive functions required for a User Console and supports the UART’s
Timer/Counter as a 10ms Jiffy Clock. The Jiffy Clock is used for a Real Time Clock (RTC) that
keeps track of time since System Cold Start in the form of Seconds, Minutes, Hours and Days (up
to 65535 days) and also provides a core delay routine of 10ms that is used via the BIOS and
Monitor for accurate delays with a wide range just over 491 days!

 The BIOS provides an Interrupt Service Routine that supports full-duplex Transmit and Receive of
the UART Console data, the Timer/Counter and Received Break via the Terminal program on the
PC. The latter (Received Break) is used to break the SBC out of any running software loop.

 The BIOS also uses a Vector based set of routines addresses which are held in RAM starting at
location $0300. This provides entry and exit routines for the UART which can be extended for other
devices and/or software functions. The default UART configuration data is held in RAM starting at
location $0320. This allows the user to temporarily change the UART configuration and just call the
Initialization routine to change the operating parameters. The default Console setup is for 38.4K
baud rate, 8- Data bits, No Parity and 1- Stop bit. This allows for binary transfer of data between
the host PC and the Pocket-SBC.

 The BIOS functions are accessible via a Jump Table starting at location $FF00. There are 32
available functions calls in the Jump Table. The current BIOS version of 2.0 only uses 13 of these
table entries for supporting the System startup, UART operations and entering the Monitor via the
soft Vectors. The rest of the Jump Table entries are available for future expansion of the BIOS.
There’s still over 1KB of ROM space left is the defined BIOS memory mapping.

 The Monitor provides a rich set of functions that include a set of Memory Operations, Register
Operations, Timer/Delay Operations, A Macro Facility for loop runs/testing and a set of Control-key
functions. It also has a table-driven Disassembler that supports the full set of WDC Opcodes and
Addressing modes for WDC’s W65C02S processor. The current Monitor version is 2.0 and has its
core functions accessible via a Jump Table starting at location $E000. There are 32 Jump Table
entries, of which the Monitor currently uses 23. The next version of the Monitor will use more of
these for additional functions.

5

BIOS Jump Table Entries:
$FF00 Reserved for Future Expansion
$FF03 Reserved for Future Expansion
$FF06 Reserved for Future Expansion
$FF09 Reserved for Future Expansion
$FF0C Reserved for Future Expansion
$FF0F Reserved for Future Expansion
$FF12 Reserved for Future Expansion
$FF15 Reserved for Future Expansion
$FF18 Reserved for Future Expansion
$FF1B Reserved for Future Expansion
$FF1E Reserved for Future Expansion
$FF21 Reserved for Future Expansion
$FF24 Reserved for Future Expansion
$FF27 Reserved for Future Expansion
$FF2A Reserved for Future Expansion
$FF2D Reserved for Future Expansion
$FF30 Reserved for Future Expansion
$FF33 Reserved for Future Expansion
$FF36 Character Input (no waiting): Carry Flag set if Character is in A Register, else Clear
$FF39 Character Input: Waits for a Character and returns in A Register, Carry Flag Set
$FF3C Character Output: Sends Character in A Register to Console, A Register preserved
$FF3F Set Delay Time: Input for Millisecond Count and 16-bit Multiplier value (in Hex)
$FF42 Execute Millisecond Delay: 1-256 (times) 10ms (Jiffy Clock resolution)
$FF45 Execute Long Delay: 16-bit Multiplier (times) Millisecond Delay above
$FF48 Execute Extra Long Delay: 8-Bit Multiplier (times) Execute Long Delay values (in Hex)
$FF4B Initialize Vectors: Initialize Software Vectors from ROM to RAM
$FF4E Initialize Configuration: Initialize I/O Configuration Data from ROM to RAM
$FF51 Initialize UART: Sets up operating parameters for SCC2691
$FF54 Reset UART: Resets the SCC2691 – called before the above routine at startup
$FF57 Monitor Warm Start: Jumps to Monitor Warm Start Vector
$FF5A Monitor Cold Start: Jumps to Monitor Cold Start Vector
$FF5D System Cold Start: Jumps to Cold Start Routine (same as system Reset)

 Note that in most cases, register contents are preserved on exit, i.e., delay routines can be called
without saving register contents. They will be the same on exit as on entry. Initialization routines
change the register contents as they are typically used for startup only.

6

Monitor Jump Table Entries:
$E000 Monitor Warm Start: Warm Start entry point – Vector points here
$E003 Monitor Cold Start: Cold Start entry point – Vector points here
$E006 Reserved for Future Expansion
$E009 Reserved for Future Expansion
$E00C Reserved for Future Expansion
$E00F Reserved for Future Expansion
$E012 Reserved for Future Expansion
$E015 Reserved for Future Expansion
$E018 Reserved for Future Expansion
$E01B Reserved for Future Expansion
$E01E Reserved for Future Expansion
$E021 Processor Status: Displays Program Counter and Processor Registers
$E024 Disassemble Instruction: Will disassemble current instruction at INDEXL/INDEXH
$E027 Increment Index: Increments INDEXL/INDEXH by 1
$E02A Decrement Index: Decrements INDEXL/INDEXH by 1
$E02D Read Line from Console: Reads a Line of Hex Characters for Monitor Input
$E030 Read Character from Console: Reads a Character, converts to Upper Case
$E033 Hex Input 2: Inputs up to Two Hexadecimal Characters from Console
$E036 Hex Input 4: Inputs up to Four Hexadecimal Characters from Console
$E039 Hexadecimal to ASCII: Converts a 16-bit Hexadecimal value to Decimal ASCII String
$E03C Binary to ASCII: Converts an 8-bit Binary value to Two Hexadecimal ASCII Characters
$E03F ASCII to Binary: Converts up to Two Hexadecimal ASCII Characters to an 8-bit Binary
$E042 Beep: Sends a Beep Control Character to the Console
$E045 Dollar: Sends a “$” to the Console
$E048 C/R Out: Sends a Carriage Return and Linefeed character to the Console
$E04B Space: Sends an ASCII Space character to the Console
$E04E Print Byte: Prints a Byte Value as Two ASCII Hexadecimal Characters to Console
$E051 Print Word: Prints a Word Value as Four ASCII Hexadecimal Characters to Console
$E054 Print ASCII: Prints any valid Byte value to Console as ASCII, else sends a “.”
$E057 Prompt Print: Prints a Message based on a Message number in the A Register
$E05A Prompt Print2: Prints a Message based on PROMPTL/PROMPTH pointer
$E05D Continue: Prompts to Continue execution, else Pops the Stack and re-enters Monitor

 In most cases, required Data as input is via the A register and Y register (high order / low order).
In most cases, Data as output is via the A register and Y register (high order / low order). The
Monitor Source code is documented for all functions and register usage and should be consulted
as required.

7

Monitor Commands:
Command Parameters Command Description

A New Value or [return] Display A Register – Change to New
C Source, Target, Length Compares two blocks of memory
D Address Displays 256 Bytes of memory as Hex / ASCII
E Address Examine/Edit Sequential Memory Locations
F Source, Length, Value Fills a Block of Memory with a Hex value
G Address Execution from Specified Address
H Hex Data (16 bytes max) Searches for Hexadecimal Data up to 16 bytes
I Address – then text Directly enter ASCII text into Memory (ESC to quit)
M Source, Target, Length Moves a Block of Memory from Source to Target
P New Value or [return} Display Processor Status Register – Change to New
R [no input] Displays All CPU Registers and Program Counter
S New Value or [return] Displays Processor Stack Pointer – Change to New
T ASCII Data (16 chars Max) Searches for ASCII string up to 16 bytes
X New Value or [return] Display X Register – Change to New
Y New Value or [return] Display Y Register – Change to New
([no input] Resets Input FIFO - Macro input up to 127 keystrokes
) [no input] Starts Macro Loop – “Send Break” from Terminal to exit
, ms Value / 16-bit Multiplier Millisecond Delay Count (8-bit) / 16-bit Multiplier Value
. [no input] Executes Millisecond Delay – 8-bit Count (times) 10ms
/ [no input] Executes Long Delay – 16-bit Multiplier (times) above
\ Hex value ($00 - $FF) Executes ExtraLong Delay – 8-bit value (times) above

CTRL-D Address Disassembler – Disassembles 22 lines, N for next
CTRL-L Address/Offset [optional] Xmodem-CRC Loader with S-Record Support
CTRL-P Source, Target, Length Program EEPROM – Source must be in RAM
CTRL-Q [no input] Display Terse List of All Commands
CTRL-R Y/N Prompt Restarts System
CTRL-T [no input] Displays Up Time since System Start or Reset
CTRL-V [no input] Displays Monitor and BIOS Version
CTRL-Z Y/N Prompt Zero All Memory and Restart System

 The C02 Monitor is a “prompting” design. This means it will prompt the user for all required input.
If a “$” is presented, the required input is Hexadecimal data (0-F). The Return key is used rather
than the Space bar to accept the input field and move to the next (field) or complete the command.
You can use short input as well, i.e., $100 instead of $0100. All input data is validated during input,
i.e., you can’t enter incorrect field data for Monitor commands. Any input error results in an audible
Beep. You can Backspace as well in the case of incorrect entry parameters. (ESC) exits most
every command before execution. All destructive memory operations require additional commit
from user as “cont?(y/n)”. Realize however, that with the Monitor, you can overwrite things and
crash the system is you’re reckless. The I/O regions are masked from the Memory Search and
Display functions however, as these can put the NXP UART into a test mode!

8

Reference Information and Kudos:
 Some Reference links are contained here and some thanks to some of the 6502.org Forum users:

BDD: for insisting on the NXP UART, debugging, some BIOS optimizations, plus, plus....

cbscpe: for cleaning up and simplifying the WinCUPL source for the PLD logic, Danke!

Dr Jefyll: for lots of clever ideas on debugging the SCC2691 BIOS (and W65C02 bugs).

barrym95838: for a short and clever routine to convert 16-bit binary to ASCII Decimal.

GarthW (aka Boss): for endless information, feedback, input, etc.

BigEd: The group encyclopedia, finds everything ;-)

 The rest of crowd that looks at my posts and such without giving me grief.

Some Links I used for this project:

http://forum.6502.org/viewforum.php?f=11

http://wilsonminesco.com/

http://wdc65xx.com/

https://www.mouser.com/Electronic-Components/

https://www.nxp.com/products/analog/interfaces/uarts:MC_50931#/&page=1

http://www.ftdichip.com/Products/Modules/USBRSxxx.htm#DB9-USB

https://www.expresspcb.com/free-cad-software/

http://www.atmel.com/tools/wincupl.aspx

 All the Best, Floobydust (aka KM)

