

SuperBoot v1.00
for SuperCPU

SuperCPU Initialization and Payload Launch Vehicle

Create large, multi-bank SuperCPU programs in read-only memory. Boot automatically.

Written by
Bert Novilla (satpro)

11/20/2016

Note: Emulation is currently the only avenue for activities of this sort. Thankfully, emulation in VICE is
excellent. But, just for the record... Actual hardware would be more

Auto-boot a SuperCPU?
In this article, I will show how to create the program that starts and controls a SuperCPU. This program
is a block of code commonly referred to as a boot or BIOS. What is a boot? For our purposes, a boot is
“hardware initialization code in read-only memory that passes control to a secondary, payload program.”
The payload can be anything. During computer initialization, the “boot” sets things up and then hands off
to the payload. In this article, we will build a SuperCPU boot from scratch.

 excellent.

Our boot program, which we will call SuperBoot, requires neither C64 Kernal nor BASIC in order to
function. Rather, it assumes neither is present. In a way, SuperBoot is a payload-assist service. It
initializes computer hardware and helps launch a secondary program, the payload. SuperBoot starts at
computer power-on, when the CPU is in Emulation mode and retrieving the RESET vector. Following
this, SuperBoot implements a set of distinct steps, leading to an eventual handoff to some other control
program. I use a version of this template to launch my experimental 16-bit operating system, Winc64.
Without SuperBoot, I would have to load Winc64 every time I wanted to use it.

Why SuperBoot?
SuperBoot is very small and blindingly fast. It starts in VICE similar to a cartridge, automatically, except
that the secondary program it delivers, the payload, will be running at a full 20 MHz in fast static RAM.
This is akin to using a CMD or VICE image, except their payloads, C64 Kernal and BASIC, run in Emulation
mode and thereafter, must load everything from disk or cartridge. If a program does switch to Native
mode, hidden SuperCPU interrupt handlers still switch to Emulation mode and back every time an
interrupt occurs. To make matters worse, SuperCPU cartridges operate at 1 MHz, and the only cartridges
that will work contain 8K.

With all of this in mind, I decided to write SuperBoot.

Design Choices.
SuperBoot is minimalist. Working in 65816 Native mode, it initializes a virtual 65816, SuperCPU, and
C64. It blanks the screen and border to black, and passes control to a secondary, payload program at
location $1000 in Bank $00. The rest is up to the payload program.

By keeping it small and simple, we eliminate many headaches. A full-featured BIOS will do much more,
but this is v1.00. (A timed splash screen debuts in v1.01) The CPU is in Native mode and C64 set for all
RAM, so both 65816 and SuperCPU behave by the book in full Native mode, and all complications and
quirks vanish. The payload SuperBoot delivers will not have access to a C64 Kernal or BASIC. It will be in
an environment we refer to as “bare metal” and this means there is no safety net. One could add BASIC or
Kernal as additional payload programs, but to SuperBoot and SuperCPU, they do not yet exist.

Ready. Reset. Go.
At power-on, a set of instructions executes, first in RAM Bank $00, then in ROM Bank $F8. This occurs
millions of cycles before a C64 Kernal accepts control and shows the blinking “READY” prompt. Chances
are, many readers have never seen or read about the first instructions that execute in a SuperCPU. This is
immediately after power-on, in read-only memory located in Bank $F8. Before that there is RESET, the
point in time when a 65816 is reset electrically and begins executing instructions. RESET is the starting
point for everything that happens next. As it turns out, we can specify what happens next.

Native mode, SuperCPU, and its registers.
A 65816 CPU performs operations on 16-bit data and directly accesses a 24-bit address space. SuperBoot
places the payload in fast static RAM (banks $00-$01), which is memory that runs at the full 20 MHz. A
surprisingly small number of hardware registers will control a SuperCPU effectively.

To aid in learning how a SuperCPU works, I studied the original binary image from CMD as well as source
code for the VICE emulator. I also obtained unpublished VICE boot ROM source, and it was invaluable.
While not plentiful, there was enough information online to gather a reasonably accurate picture of how a
SuperCPU works. I also documented dozens of other locations, which are not important here.

CMD 2.04
The CMD 2.04 image (128K) is elaborate and contains an enormous amount of code tasked with
proprietary device communication, among many, many other things. A zillion C128 machine checks litter
the startup code. The 2.04 package includes the famous “CMD Space Rocket” splash animation, JiffyDOS,
RAMLink, and a useless second bank, which is devoted to the C128.
Handoff at $FCE2: 3,490,932 1 MHz cycles. (3,505,268 - 14,336)

VICE 0.05-0.06
In contrast, the VICE 0.05 image (64K) consists of minimal code devoted primarily to controlling a
SuperCPU and dealing with interrupts in 8-bit Emulation mode. VICE does not worry about a C128, or
RAMLink and JiffyDOS, but just like CMD, performs a memory test and confines itself to Emulation mode.
Handoff at $FCE2, adjusted for 2K payload: 9,628 1 MHz cycles. (23,964 - 14,336)

SuperBoot v1.00 at handoff, 2K payload: 2,325 1 MHz cycles. This is 76% less than VICE, and 99%+ less
than CMD. In this article, we explore a much faster, more direct approach. The secret is... Native mode.

Power-on and Bootmap mode.
At power-on, a 65816 CPU is in 8-bit Emulation mode. Instruction execution commences at the 16-bit
address pointed to by locations $FFFC-$FFFD, in Bank $00 -- the normal RESET vector everyone knows.
Normally this address is in ROM, but the SuperCPU contains RAM in Bank $00. There is no ROM. To
overcome this issue, the SuperCPU contains an operational environment known as Bootmap mode.

In Bootmap mode, the CPU “sees” the upper 32K bytes of read-only memory (ROM) Bank $F8 instead of
random-access memory (RAM) in Bank $00, excluding the 4K I/O block at $D000. With clever address
mapping, Bootmap mode fools a CPU into seeing ROM where RAM exists.

Note: VICE requires ROM images to contain 64K, 128K, 256K, or 512K bytes. 64K segments are
numbered 0 - 7, and SuperCPU reserves banks $F8-$FF for read-only memory. In this article, read-only
memory in Bank $F8 is referenced as “ROM Bank $F8”.

The power-on indirect vector landing point, which can be as simple as a long jump back to ROM Bank
$F8, is located within the second 32K block of memory in ROM Bank $F8, excluding the $D000 I/O block.
While Bootmap mode is active, a 65816 thinks it is working in actual Bank $00 memory. This is how a
SuperCPU finds the non-existent RESET vector at $FFFC. Just after RESET via $FFFC, SuperBoot lands at
$FFE0 -- right into the loving arms of a long jump to $F8:0000.

With CMD and VICE images, a SuperCPU is a 16-bit machine forced into compatibility with the limited 8-
bit environment of a C64, Kernal, and BASIC. An operating system must allow programs to run in Native
mode, yet both the Kernal and BASIC run assuming a 6510. Without modification, the stock C64 Kernal
will not function properly in Native mode, running at 20 MHz. There are several additional SuperCPU
hardware issues with an Emulation mode kernal, as noted elsewhere in this document. SuperBoot’s
approach is to activate Native mode at 20 MHz and stay there, and to assume a C64 Kernal does not exist.
If desired, one could modify and integrate a C64 Kernal into the payload mix, as CMD and VICE do, but a it
is not required for SuperCPU operation.

Later on, Bootmap mode is disabled and normal mapping resumes as initialization continues. The final
task in ROM Bank $F8 is to pass control to the payload program. Arbitrarily, I chose location $1000 in
Bank $00 as the handoff address, but it could be any address in Banks $00-$01, with a few exceptions. At
any rate, a new control program will take over from there.

SuperBoot is finished.

“Inside SuperBoot”

At power-on, a SuperCPU is in Bootmap mode, a 65816 is in Emulation mode, and a C64 is in reset. After
a long jump from $FFE0 in Bank $00, hardware initialization begins in ROM Bank $F8, but does not
remain there for very long. Read-only memory is slow, relatively speaking -- barely half as fast as static
random-access memory -- so only important tasks are performed by instructions in ROM Bank $F8.
Everything else takes place later at full-speed in fast static RAM Bank $00.

Below is an example showing the last 192 bytes of ROM Bank $F8. This block is largely unused, yet vital
to the boot process. Native mode interrupt vectors at $FFE4-$FFEF behave just as they do with a C64, but
are in a different place. Notice the long jump at $FFE0. This is a four-byte springboard to ROM Bank $F8,
the place where hardware initialization begins. ($FFE0 is SuperBoot’s “$FCE2”) SuperBoot is not
concerned with any of the interrupt vectors. The payload will determine and configure interrupts.

In the table below, the mostly empty 192-byte block shown is visible in Bank $00 only while Bootmap
mode is active, so SuperBoot copies this block from ROM Bank $F8 to RAM Bank $00 in order to be visible
at all other times. There is not much to see here. The 160-character copyright message block, located at
$FF40, is cosmetic and optional. VIC Bank 3 bitmap graphics will not affect the copyright message
because it is out of range. Incidentally, this is a great place to come up with something clever.

Source Code Format.
In all code samples, there are no symbolic names, labels, or macros. The source text is a pseudo-monitor
listing, designed to be easy to understand.

Vector Table, Springboard, and Copyright Message at $F8:FF40
Mapped to $00:FF40 when Bootmap mode is active

*= $ff40 ;”Copyright” your message goes here (max. 160 chars)

.null "superboot v1.00 copyright 2016 bert novilla (satpro)"

*= $ffe0 ;”Reset” 5C 00 00 F8

 jml $f80000 ;springboard: abs long jump to ROM at $f8:0000

*= $fffc ;RESET E0 FF
.word $ffe0 ;RESET points to “Reset” ($ffe0)

65816 Startup
First, SuperBoot initializes the 65816 CPU. Some values, such as Stack Pointer and Direct Page, are
arbitrary and default. The payload will probably change the values anyway. The Data Bank register is set
to $00, which allows SuperBoot to use normal addressing in RAM Bank $00 -- while executing instructions
in ROM Bank $F8. SuperBoot will remain in Native mode until handoff, but ultimately, the payload
determines what happens after SuperBoot has finished. In reality, a good boot program would anticipate
a rogue-entry situation, e.g. a warm start. For simplicity, SuperBoot assumes the only entry point is
through hardware reset.

For this first code fragment, the CPU operates with a 16-bit accumulator and 8-bit index registers.
Interrupts remain disabled until handoff.

65816 Initialization at $F8:0000 (Start)

*= $f80000 ;$F80000 in bank rom $f8

;SuperBoot lands here after a long jump from $00ffe0...

;65816 is in Emulation mode, SuperCPU is in Bootmap mode

;----- 65816 CPU NATIVE MODE INITIALIZATION -----

78 sei ;disable interrupts

18 clc
FB xce ;enter Native mode

C2 20 rep #$20 ;set 16-bit AM, 8-bit XY

A9 FF 01 lda #$01ff
1B tcs ;Stack Pointer (SP) = $01ff

A9 00 00 lda #$0000
5B tcd ;Direct Page (DP) = $0000

AA tax ;copy 0 into 8-bit X
DA phx ;do a "push-pull" of a 0 byte
AB plb ;Data Bank (DB) = $00 (all data accesses in Bank $00)

Disable C64 hardware.
Now, it is time to visit a few key hardware registers in the C64
itself. Because read-only memory is slow memory, SuperBoot
limits time-consuming activities while in ROM. For now, it will
shut down C64 I/O, disable simulated C64 ROM memory, and
blank the screen to a nice, clean black.

Accessing C64 hardware.
For a SuperCPU, accessing C64 hardware is always an expensive
hobby, even while operating in static RAM. In order to be 100%
effective, C64 I/O accesses should be spaced about 20 CPU cycles
apart. Anything less, on average, could result in a slight delay
while waiting for the next 1 MHz I/O access cycle. In reality, one
will probably never have to worry about this, as there is a one-byte
hardware buffer to help soften I/O mirroring.

The SuperCPU runs at 20 MHz; the C64 hardware runs at 1 MHz. You either wait, or do something else
for 19 cycles while C64 I/O access takes place. It really is this simple. The payload program should limit
its activity to static RAM Banks $00-$01 as much as practicable. Static RAM guarantees 20 MHz. All other
memory is slower, to varying degree. Period.

64K RAM, Disable C64 I/O Hardware
MMU, VIC, CIA, and SID

A2 E5 ldx #$e5 ;MMU: disable simulated ROM, enable I/O
86 01 stx $01 ;c64 : $a000 = RAM, $d000 = I/O, $e000 = RAM
A2 2F ldx #$2f ;set data direction
86 00 stx $00

A2 00 ldx #$00 ;black border (for a clean, black boot screen)
8E 20 D0 stx $d020 ;VIC border register
11 D0 stx $d011 ;blank the screen output to border color

A2 7F ldx #%01111111 ;#$7f disable all cia interrupts
8E 0D DC stx $dc0d ;CIA #1 Interrupt Control Register
8E 0D DD stx $dd0d ;CIA #2 Interrupt Control Register

AD 0E DC lda $dc0e ;CIA #1 Control Register A
29 FE FE and #$fefe ;16-bit mask
8D 0E DC sta $dc0e ;cia #1 16-bit stop timers A & B

AD 0E DD lda $dd0e ;CIA #2 Control Register A
29 FE FE and #$fefe ;16-bit mask
8D 0E DD sta $dd0e ;cia #2 16-bit stop timers A & B

A2 1E ldx #30 ;clear SID w/ 16-bit loop
9E 00 D4 - stz $d400,x
CA dex
CA dex
10 F9 bpl -

SuperCPU hardware
So far, most of it looks at least somewhat familiar. From here, SuperBoot moves on to SuperCPU
hardware. To unlock write access, it performs a store (poke) to location $D07E. This activates SuperCPU
hardware registers and permits write access. Storing to location $D07F de-activates the registers and
resumes read-only status.

In Bank $00, the $D200-$D3FF block holds 512 bytes covered by hardware write-protection, accessed as
described above. For example, CMD stores the amount of free RAM in this block. SuperBoot does not use
any of this memory. Access here is incurs a one-cycle penalty.

The Free RAM Test and Checksum.
One of the ways SuperBoot saves time is by eliminating the RAM test. This may have been necessary with
real hardware, but we are emulating a 16M SuperCPU. We know our RAM is good, and we know how
much there is. There is no need for this extremely costly, long loop. For the same reason, SuperBoot does
not need a checksum.

Note: Bonus! We gain 128K, because CMD (and VICE) reserve RAM Banks $F6-F7 for “system use” and
mark those banks as off-limits.

20 MHz Turbo is selected, and memory optimization is turned off in preparation for the payload copy.
Bootmap mode is disabled, and hardware registers are de-activated.

Initialize SuperCPU Hardware

;----- INITIALIZE SUPERCPU HARDWARE -----

8E 7E D0 stx $d07e ;activate hardware registers

;--

A2 84 ldx #%10000100 ;#$84 payload will specify a vic bank later
8E B3 D0 stx $d0b3 ;= full speed (turns off all mirroring)

8E 7B D0 stx $d07b ;software speed select = 20 mhz
8E 73 D0 stx $d073 ;system disable 1 mhz

A2 04 ldx #$04
8E 78 D0 stx $d078 ;set SIMM type (16 mb)

8E B6 D0 stx $d0b6 ;disable bootmap ($f8 mapped into $00 @ $8000-$ffff)

;--

8E 7F D0 stx $d07f ;de-activate hardware registers

That is it. All that remains is to copy the payload program to RAM Bank $00.

The Payload Copy.
The possibility exists for some program to require use of all 512K ROM. For efficiency, a payload should
place as much code and data as possible into RAM Banks $00 and $01. For that, SuperBoot copies
memory from ROM Bank $F8 to RAM Bank $00, in one or more payload blocks. In our example here,
SuperBoot delivers data to two different places in RAM Bank $00 using instruction MVN. Any arbitrary
size value up to 64K (0) may be used. Repeat the procedure as required.

All CPU registers are set to 16 bits for the copy. For ease, source and destination addresses are the same,
but do not need to be. Remember to preserve the Data Bank register. From ROM to RAM, transfer rate is
approximately 1 byte/us. (1MB/sec.). This is about one byte per C64 cycle.

Deliver the Payload Program to RAM Bank $00

C2 30 rep #$30 ;go16axy
8B phb ;save data bank because it is not retained

A9 FF 07 lda #$0800-1 ;size-1 copy the 2048-byte payload
A2 00 10 ldx #$1000 ;src addr
A0 00 10 ldy #$1000 ;dst addr
54 00 F8 mvn $f8, $00 ;copy 2048 bytes from $f8:1000 to $00:1000

A9 BF 00 lda #$00c0-1 ;size-1 copy the 192-byte vector table
A2 40 FF ldx #$ff40 ;src addr
A0 40 FF ldy #$ff40 ;dst addr
54 00 F8 mvn $f8, $00 ;copy 192 bytes from $f8:ff40 to $00:ff40

AB plb ;restore data bank

Wrapping up.
Earlier, SuperBoot disabled memory optimization. Memory optimization targets a VIC bank and only
mirrors data from the specified 16K bank. (SuperBoot v1.01 introduces memory optimization)

With that, the initialization routine is complete! The payload program at $00:1000 takes over and
SuperBoot exits. At this point, a typical payload program might load its graphics or display a splash
screen. SuperBoot however, is finished.

The End

;----- done, exit to payload program coldstart -----

5C 00 10 jml $001000 ;payload coldstart

Some final thoughts.
That is all there is to it. 125 bytes, 2325 1 MHz cycles. Not much, huh? The computer is now humming
along at a full 20 MHz, in the fastest type of RAM available. For this article, SuperBoot was limited
intentionally. One idea is to expand this template into something more full-featured, with diverse options
and packages. Here, we assumed the payload will manage its own operating environment, but much of
that environment could be pre-built by SuperBoot.

Native mode interrupts are essentially the same as 6502 interrupts; in fact, I believe they are much easier
to deal with. In addition to new, targeted instructions, a 65816 automatically saves and restores the
Status register, freeing an interrupt handler of any burden for preserving register widths.

Enjoy. More to come.

Page forward to see how to build a ROM image.

Commodore World #20, page 43:
“The enhanced vector table directs interrupts that occur under the following circumstances to a new set of
routines in the SuperCPU Kernal.”

1) The 65C816 is in Native mode.
2) The SuperCPU hardware registers are enabled.
3) The System 1 MHz flag is true ($D0B2 Bit 7 = 1).
4) The DOS Extension mode is enabled ($D0BC Bit 7 = 1).
5) The RAMLink hardware registers are enabled ($D0BC Bit 6 = 1)

Note: When the Kernal ROM is switched out, the vectors are accessed from the RAM under the
Kernal ROM. As on the C64, the programmer in this case must provide his own vector table and
interrupt service routines.

SuperBoot v1.00
for SuperCPU

How to Build the ROM Image

In order to build an image of SuperBoot, you will need a hex editor. For version 1.00, we will build a 64K
image, but you may also try 128K, 256K, or 512K. Programs should download code and data to static
RAM Banks $00-$01 prior to time-intensive operations involving the data.

1. Create a new 64K image, filled with 00 bytes. The image size is 65536 bytes.

2. Insert: E0 FF at $FFFC. Insert: 5C 00 00 F8 at $FFE0. Copyright text at $FF40 is optional.

3. Insert SuperBoot binary at $0000.

4. Insert payload binary at $1000.

5. Click Settings/ROM Settings and load the image into VICE.

6. Click File/Reset/Hard and perform a Hard Reset (Ctrl+Alt+R). You should see something like this.

A register display should look like this. Use Alt+M to enter the monitor, then the <R> command.

 PB ADDR CREG X Y STCK DPRE DB NVMXDIZC E LIN CYC.SB

.;00 1000 ffff 0000 0000 01ff 0000 00 00000111 0 004 052.13

(C:$1000)

That’s it! We are finished.

	SuperBoot v1.00 for SuperCPU SuperCPU Initialization and Payload Launch Vehicle
	SuperBoot v1.00 for SuperCPU How to Build the ROM Image

