
C-128 80 COLUMN DISPLAY MANAGER

Developed by BCS Technology Limited

Copyright ©1987 by BCS Technology Limited. All rights reserved.

Introduction. 1

Numbered Functions. 3

80CDM Calling Syntax.. 4

Using 80CDM. 6

Numbered Functions Descriptions.. 8

Copy Screen. 9

Exchange Screens. 11

Redirect Display.. 12

Enable/Disable Status Line. 13

Screen Blanker.. 15

Screen Adjuster. 16

Export Screen. 17

Import Screen. 19

Status Line Writer. 20

Programming Considerations. 22

Interrupt-Driven Access. 24

Driving the Status Line from BASIC. 25

Licensing.. 27

TABLE OF CONTENTS

The C-128 80 Column Display Manager (80CDM) is a programming utility that has been designed
to supplement the Commodore C-128's 80-column video display implementation, especially the
windowing functions.

The following operations are available through 80CDM when running on a C-128 with 64
kilobytes (KB) of video memory (VRAM):

M Screen copy. Copy the visible display (the “live” screen) and its attributes to any one of
ten available hidden screen buffers. It is also possible to copy any hidden screen buffer to any
other, or to the live screen.

M Screen exchange. Swap the live screen and an exchange screen buffer, the latter which
is a separate buffer from the ten buffers available to the screen copy function.

M Display redirection. Send print output to any of the ten hidden screen buffers, as well as
to the exchange buffer, allowing a program to prepare a screen “behind the scenes” and then
later copy it to the live screen.

M Screen export. Copy a selected screen to a designated area of system memory (RAM-0).

M Screen import. Copy a designated area of RAM-0 to a selected screen.

M Screen blanker. Turn off the visible display to reduce the risk of static image burn-in on
your monitor.

M Static status line. Reorganize the display to generate an extra text row, this row being
available as a static reverse video status line that is unaffected by normally printing or screen
clearing. 80CDM includes a function to display text on the status line, starting at any desired
column. Another function may be used to vertically center the raster on the screen when the
status line is enabled.

On a C-128 with 16 KB VRAM, the screen exchange, status line and display adjustment features
will be inoperable, and only one hidden screen buffer will be available.

The screen copy and exchange functions work by storing display and attribute bytes into blocks
of normally unused VRAM, utilizing the block-copy feature of the 8563/8568 VDC hardware.
Along with the copying of VRAM, 80CDM stores the associated operating system (kernel) display
variables into tables for later use. When a stored screen is copied to the live screen, the kernel
variables are copied as well, and the visible display takes on the characteristics it had when the
screen was originally stored. The result is that everything associated with the appearance of the
display, including the window size and position, is restored.

C-128 80 COLUMN DISPLAY MANAGER

Page 2 of 27

In addition to the above, the screen blanker and status line writer functions have been designed so
they may be called from both foreground and interrupt-driven code. One use of this capability
would be to have a continuous time-of-day display appear on the status line that is not affected by
normal foreground processing. Another would be to turn off the 80 column display when some
arbitrary amount of time has passed with no keyboard activity having occurred.

80CDM is copyrighted software and may be used and/or redistributed with limitations. Please
refer to page 27 for more information.

Page 3 of 27

80CDM FUNCTIONS

Access to 80CDM is via a static jump table. The first address in the jump table is for invoking
the “numbered” functions, that is, functions that are selected by passing an index to 80CDM.
Other functions within 80CDM have individual addresses in the jump table and will be described
later on.

The numbered functions in 80CDM are as follows:

0 Initialize 80CDM.
1 Copy screen.
2 Exchange screens.
3 Redirect display.
4 Enable/disable status line.
5 Screen blanker.
6 Adjust vertical display (raster) position.
7 Export screen to RAM-0.
9 Import screen from RAM-0.

Please note that function 8 is not defined. Attempting to call function 8 will cause an error. Also,
on a 16 KB VRAM system, even numbered functions other than 0 will not be available.

80CDM loads into RAM-0 starting at $0E000 (57344), which is under the kernel ROM. As a
result, 80CDM is about as unobtrusive as anything can be on a C-128. Programming
considerations will be discussed later on.

Page 4 of 27

GENERAL CALLING SYNTAX

The general form of a BASIC call to a numbered 80CDM function is as follows:

BANK 0:SYS DM,FC,P1,P2

In the above, DM is 80CDM’s function execution address, currently at $E000 or 57344, FC is
the function number as described above and P1 and P2 are function-specific parameters, which
may not be required in every case. The call must always be preceded by BANK 0 in order to
establish the correct memory map. Omitting the BANK 0 directive may result in system fatality.

The general form of an assembly language call to a numbered 80CDM function is as follows:

lda #%00111111
sta mmucr ;$FF00, map out all ROMs
lda #func ;binary function number
ldx #parm1 ;binary function-specific parameter #1
ldy #parm2 ;binary function-specific parameter #2
jsr dmfunc ;numbered function entry point at $E000
bcc okay ;function call successful
bcs error ;error code returned in .A

Following any call, 80CDM will return status information, usually to indicate if the call was
satisfactorily completed. The general form for retrieving status in BASIC is:

RREG EE,,,C:C=(C AND 1):IF C THEN ...process error...

Note that 80CDM does not interact with BASIC in any way. Therefore, the above error
checking method must be immediately executed after an 80CDM call to determine success or
failure. EE will return an error code whose meaning may vary from function to function. If no
error has occurred, EE will hold the function number that was used to call 80CDM.

NOTE: The expression C=(C AND 1) works around a problem with the way BASIC 7.0
handles Boolean AND statements involving signed one-byte integers. Directly
testing C AND 1 with an IF-THEN statement may not behave as expected.

There are three error codes that may be returned by any function call:

 64 ($40) 80 column display not active.
128 ($80) Invalid function number.
192 ($C0) 80CDM not initialized.

Page 5 of 27

Error 128 ($80) will be returned if the function number is totally out of range or if the function
is not available, for example, specifying functions 2, 4 or 6 on a system with 16 KB of VRAM.

Following an assembly language call in which an error occurred, indicated by carry being set,
80CDM will return the error code in the accumulator (.A). Generally speaking, .X and .Y will
return their entry values. If the function call was successful, .A will return its entry value. All
of this will be discussed in more detail.

It is essential in assembly language programs to correctly configure the memory map before
calling 80CDM, as the usual system state is to have the kernel ROM mapped in. Forgetting to
write the correct configuration to the MMU will invariably cause a fatal error. Function calls to
80CDM when the 40-column display is active will immediately abort with error 64 ($40).

Incidentally, SYS DM, where DM is 80CDM’s jump table starting address, will execute faster than
SYS <ADDR>, where <ADDR> is a hard-coded numeric or hexadecimal address, as the latter
requires a time-consuming double numeric conversion in BASIC. In any case, hard-coding
addresses into your code is never good programming practice.

Page 6 of 27

USING 80CDM

80CDM must be BLOADed into RAM-0 and initialized before use. The initialization procedure
from BASIC is as follows:

BLOAD "80CDM.BIN",B0: REM load into bank $00
DM=DEC("E000"): REM 80CDM’s base address
BANK 0:SYS DM,0: REM initialize 80CDM
RREG VR,NS,FF,C:C=(C AND 1): REM get return status
IF C THEN PRINT "ERROR";VR;"OCCURRED."

During initialization, you may see a momentary disruption to the 80 column display as 80CDM
sizes the available video RAM. If 64 KB of VRAM is detected on a C-128 with the 1985 revision
ROMs (original ROMs), the VDC will be reconfigured to use that extra RAM, which will result
in the screen will be cleared to reestablish a coherent display. No such clearing operation will
occur with the C-128DCR, since it shipped with 64 KB of VRAM.

Initialization will fail with an error if the 40-column display is active, in which case VR will be
64 and the values in NS and FF will be meaningless. Otherwise, RREG will return the following
information:

VR The amount of VRAM detected, either 16 (16 KB) or 64 (64 KB).

NS The number of screen buffers available for use, either 1 (16 KB system) or 10 (64 KB
system).

FF Available functionality, either 0 for limited functionality (16 KB system) or 1 for full
functionality (64 KB system).

“Limited functionality” means that the screen exchange, status line and display adjustment features
will not be available.

To initialize 80CDM from assembly language, assuming it has already been loaded into RAM-0,
proceed as follows:

lda #%00111111
sta mmucr ;set configuration
lda #0 ;function number
jsr dmfunc ;initialize 80CDM
bcs error ;40-col display active

Page 7 of 27

Upon return, .A will correspond to the VR variable in the BASIC form of the call, .X will
correspond to the NS variable, and .Y will correspond to the FF variable, all of these being

returned as binary values.

Once initialized, 80CDM will be ready for use. Subsequent calls to initialize 80CDM will have
no effect but will return the status values described above.

During initialization, 80CDM will lower the top-of-BASIC pointers at $01212 and $01213,
reducing the total space available for BASIC programs from 58 KB to 50 KB. This procedure is
necessary to protect 80CDM from being “stepped on” by an exceptionally large BASIC program.
In practice, this modest reduction in BASIC program text space will seldom be an issue.

Note: If you plan to run Clock-Calendar 128 (CC128) in conjunction with 80CDM, you should
load and initialize 80CDM before starting CC128. Refer to the CC128 documentation
for more information.

Page 8 of 27

NUMBERED FUNCTION DESCRIPTIONS

This section will describe each numbered function and how to use it. Before elucidating, it is
appropriate to mention an 80CDM feature called “vertical retrace delay” or VRD.

Functions that affect the visible display may cause momentary disruption due to the speed at which
the contents of VRAM can be changed by 80CDM. For example, copying a hidden screen to the
live screen may cause raster flicker (“tearing”) or momentary herringbones due to the abrupt
transition from the image that existed immediately before the copy operation to the image resulting
from the copy procedure. This effect is usually seen when the transition occurs while the visible
screen raster is being painted.

This problem was anticipated in the design of 80CDM. The VRD feature makes it possible to
arrange for display changes to occur during the vertical retrace period, which is when the VDC
is preparing to paint a new frame on the screen. During vertical retrace, the electron beam in the
video monitor’s CRT will be turned off. If VRD is enabled, the transition between displays will
occur at that time, reducing or eliminating “tearing.”

To enable VRD, logically OR the function number with $80 (FC OR 128 in BASIC). Enabling
VRD may have some negative effect on performance, as 80CDM will wait until the VDC indicates
it is in vertical retrace before executing the selected function. In most cases, the difference in
performance won’t be perceptible.

Functions that cannot use VRD or that do not affect the live screen (e.g., copying from one hidden
screen buffer to another) will behave as though VRD is not enabled.

Page 9 of 27

! Copy Screen - Function 1

To copy a screen from BASIC:

BANK 0:SYS DM,1,S,T

where S is the “source” screen number and T is the destination or “target” screen. Allowable
screen numbers are 0 (zero) for the live screen, and 1 to 10 for a 64 KB VRAM system.
Screens 0 and 1 are the only permissible screen numbers on a 16 KB VRAM system.

On a 64 KB VRAM machine, you may copy the contents of one hidden screen to another.
For example:

BANK 0:SYS DM,1,3,10

The above will copy the contents of screen number 3 to screen number 10, making screen
number 10 an exact duplicate of screen number 3.

The screen copy procedure in assembly language is as follows:

lda #%00111111
sta mmucr ;set configuration
lda #1 ;function number
ora #$80 ;set bit 7 to enable VRD
ldx #source ;source screen number
ldy #target ;target screen number
jsr dmfunc ;call function ($E000)
bcs error ;function not completed

In an assembly language call, screen numbers are binary, e.g., screen 10 will be $0A.

Possible error returns from screen copy are:

1 ($01) Invalid source screen number. This error will occur if the screen number
is completely out of range (e.g., screen number 47), is out of range for the
system (e.g., screen number 2 on a 16 KB system), or the source screen
contains no valid data.

2 ($02) Invalid target screen number. This error will occur if the target screen
number is completely out of range or is out of range for the system.

Page 10 of 27

3 ($03) Target and source screen numbers are the same.

 Copying to screen 0 will cause an instantaneous change to the visible display. It is
recommended that VRD be used with such an operation to avoid display “tearing.” VRD will
have no effect when the target of a copy operation is a hidden screen.

Page 11 of 27

! Exchange Screens - Function 2

This function swaps the live screen with the exchange (swap) screen. That is, the live screen
is copied to the swap screen and the swap screen is copied to the live screen, causing an
instantaneous change to the visible display. On the next call, the process will be repeated and,
following two successive swaps, what was originally the live screen will again become the
live screen.

To swap the live screen with the exchange screen from BASIC, proceed as follows:

BANK 0:SYS DM,2

Note that no parameters are passed with this operation. The assembly language equivalent
is as follows:

lda #%00111111
sta mmucr ;set configuration
lda #2 ;function number
ora #$80 ;to enable VRD
jsr dmfunc ;call function ($E000)
bcs error ;function not completed

Possible error returns from this function are:

1 ($01) Invalid source screen number. This error will occur if the exchange screen
contains no valid data, which will be the case when 80CDM is initialized.
Display redirection (described next) must first be used to load the exchange
screen buffer with valid display data before a swap can be performed.

An invalid function error will always be returned if an exchange is attempted on a 16 KB
VRAM system.

Page 12 of 27

! Redirect Display - Function 3

This function configures the C-128's screen kernel so the display is printed to one of the
hidden screen buffers rather than to the visible display. Once a screen buffer has been so
prepared, it may be copied to any other screen buffer or to the live screen.

To redirect the display from BASIC, proceed as follows:

BANK 0:SYS DM,3,,T

where T is the screen number to which the display is to be redirected. Note the two commas
between the function number (3) and the T parameter.

To redirect the display to the exchange buffer, specify screen number 11. Redirecting to
screen number 0 will return display output to the live screen. The only valid values for T on
a 16 KB VRAM system are 0 and 1.

The assembly language equivalent is:

lda #%00111111
sta mmucr ;set configuration
lda #3 ;function number
ldy #target ;target screen number
jsr dmfunc ;call function ($E000)
bcs error ;function not completed

Possible error returns from this function are:

2 ($02) Invalid target screen number.

Calling this function does not change the state of the display in any way, which is to say the
screen kernel variables that determine window size, cursor position, etc., will not be
disturbed. All that will change is where the screen kernel’s output goes into VRAM.
Redirecting to screen number 6, for example, will only direct output to the area of VRAM
designated as screen number 6. Therefore, it is recommended that the display be reverted to
full size and the screen be cleared if the redirection target is not the visible screen. Otherwise
it is possible that the display you are trying to build won’t be what was expected due to the
unknown initial state of the redirection target.

You should not redirect the display to a hidden screen while BASIC is in immediate mode.
As soon as you do so, you will no longer be able to see what you are typing.

Page 13 of 27

! Enable/Disable Status Line - Function 4

This function turns on or turns off the status line on a 64 KB VRAM system. As previously
explained, the status line is always displayed in reverse video and is not affected by other
activity on the screen.

To enable the status line from BASIC, proceed as follows:

BANK 0:SYS DM,4,1,A

where A is a combined color and character set selection. The color number may be any one
of the following:

 0 ($00) black 8 ($08) dark red
 1 ($01) dark grey 9 ($09) red
 2 ($02) dark blue 10 ($0A) dark violet
 3 ($03) blue 11 ($0B) violet
 4 ($04) dark green 12 ($0C) dark yellow
 5 ($05) green 13 ($0D) yellow
 6 ($06) dark cyan 14 ($0E) grey
 7 ($07) cyan 15 ($0F) white

One of the higher intensity colors, such as grey ($0E), is recommended for most applications.

Passing one of the above color numbers as is will cause text to be displayed using the upper
case/PET graphics character set. To display status line text in mixed (upper case/lower case)
characters, OR the color number with 128. For example, to turn on the status line in grey
with mixed case text from BASIC:

BANK 0:SYS DM,4,1,14 OR 128

In assembly language, the above would be:

lda #%00111111
sta mmucr ;set configuration
lda #4 ;function number
ora #$80 ;to enable VRD
ldx #1 ;enabling the status line
ldy #%10001110 ;light gray & mixed case text
jsr dmfunc ;call function ($E000)
bcs error ;function not completed

Page 14 of 27

To disable the status line:

BANK 0:SYS DM,4,0

In assembly language, it would be:

lda #%00111111
sta mmucr ;set configuration
lda #4 ;function number
ora #$80 ;to enable VRD
ldx #0 ;disabling the status line
jsr dmfunc ;call function ($E000)
bcs error ;function not completed

You can always change the status line color and character set selection by calling the function
as though the status line is being enabled. Such a procedure will not erase any status line text,
if present.

Possible error returns from this function are:

4 ($04) Invalid control switch. Only 0 and 1 are allowed.

5 ($05) Invalid attribute.

As the status line occupies an extra screen row, the vertical alignment of the raster may be
sub-optimal when the status line has been enabled. You can correct the alignment with
function number 6 (see page 16).

Page 15 of 27

! Screen Blanker - Function 5

This function turns on or off the visible display and thus may be used to prevent static image
burn-in on your monitor’s screen. From BASIC, turn off the display as follows:

BANK 0:SYS DM,5,1

To turn on the display from BASIC:

BANK 0:SYS DM,5,0

The assembly language equivalent would be:

lda #%00111111
sta mmucr ;set configuration
lda #5 ;function number
ora #$80 ;to enable VRD
ldx #1 ;turn off display
...or...
ldx #0 ;turn on display
jsr dmfunc ;call function ($E000)
bcs error ;function not completed

Possible error returns from this function are:

0 ($00) 80CDM busy, relevant if called from an IRQ handler.

4 ($04) Invalid control switch.

It is permissible to call this function from an interrupt handler. Such a procedure will be
discussed later on.

Page 16 of 27

! Raster Position Adjustment - Function 6

This function may be used to make vertical adjustments to the raster position when the status
line is enabled. Each call to this function will vertically reposition the raster one scan line,
the direction being determined by the switch value passed into the function

The general form of the function call in BASIC is:

BANK 0:SYS DM,6,SW

where the switch SW is one of the following values:

 SW Effect
)))))))))))))))))))))))))))))))))

 1 move raster up
128 move raster down
 0 restore default adjustment
)))))))))))))))))))))))))))))))))

A limited adjustment range is available—exceeding it will cause display disruption. Restoring
the default adjustment relocates the raster to the position that existed at the time the status line
was enabled.

The assembly language equivalent of the above would be:

lda #%00111111
sta mmucr ;set configuration
lda #6 ;function number
ora #$80 ;to enable VRD
ldx #switch ;adjustment switch, see above
jsr dmfunc ;call function ($E000)
bcs error ;function not completed

Possible error returns from this function are:

4 ($04) Invalid control switch.

Page 17 of 27

! Export Screen - Function 7

This function may be used to export any valid screen to RAM-0. The exported screen may
be saved to a file for later recall via the import screen function described on page 19.

To export a screen, code as follows in BASIC:

BANK 0:SYS DM,7,S,RP

where S is the source screen number and RP is the starting page in RAM-0 to which the
screen is to be exported. For example:

BANK 0:SYS DM,7,0,64
RREG RP,EL,EH,C : C=(C AND 1)
IF C THEN PRINT "ERROR";RP;"OCCURRED" : END
EA = EH * 256 + EL

The above code will export the visible screen to RAM-0 starting at address 16384 ($4000),
which is the 64th RAM page in the system. Assuming no error occurred, the starting page
(64 in this example) will be returned in RP and the exported screen will occupy RAM-0 up
to and including address EA-1. This information could be subsequently used to store the
screen into a binary (PRG) file or into a RAM expander for later recall.

In assembly language, the above example would be as follows:

lda #%00111111
sta mmucr ;set configuration
lda #7 ;function number
ldx #0 ;live screen is source
ldy #>$4000 ;system RAM starting page
jsr dmfunc ;call function ($E000)
bcs error ;function not completed

sta rampag ;save starting RAM-0 page
stx endadr ;save end of export +1 LSB
sty endadr+1 ;save end of export +1 MSB

Possible error returns are:

1 ($01) Invalid source screen number. If the source screen is not the visible display
it must have previously been loaded with data, either by copying,
redirection or by importing (page 19).

Page 18 of 27

Exported screens always start on a page boundary. The structure of the exported image is as
follows—offsets are in hexadecimal relative to the start of the target RAM-0 page:

0000 Source screen number, e.g., $0A for screen number 10.

0001 Number of bytes copied from display and attribute RAM, in little endian format.
An export of a default screen will store $07D0 (2000) into this location.

0003 Display VRAM screen codes, the total being equal to the value stored at offset
$0001.

aaaa Attribute VRAM codes, the total being equal to the value stored at offset
$0001. $aaaa will vary, depending on the screen configuration. For an
export of a default screen, $aaaa will be $07D3.

kkkk Zero page kernel variables associated with the screen, a total of $1A (26) bytes.
As with $aaaa, $kkkk will vary, depending on the screen configuration. For
an export of a default screen, $kkkk will be $0FA3.

llts Line link and tab stop bitmaps associated with the screen, a total of $0E (14)
bytes. As with $kkkk, $llts will vary, depending on the screen
configuration. For an export of a default screen, $llts will be $0FBD.

cscs Cursor shadow register associated with the screen, one byte. As with $llts,
$cscs will vary, depending on the screen configuration. For an export of a
default screen, $cscs will be $0FCB.

fgbg Foreground/background color associated with the screen, one byte. As with
$cscs, $fgbg will vary, depending on the screen configuration. For an
export of a default screen, $fgbg will be $0FCC.

Depending on the screen configuration, up to 4 KB of contiguous RAM will be required to
export a screen. 80CDM does not check the specified RAM-0 page to determine if it is safe
to use. It is your responsibility to pick an area in RAM-0 where interference will not occur.
The 4 KB under the I/O block ($0D000-$0DFFF) is a possible location if your BASIC
program doesn’t extend that high. Naturally, avoid overwriting 80CDM or anything else
essential to the operation of the system.

80CDM disables interrupt request processing during the export operation to maximize
performance. A typical export operation on a machine running in FAST mode takes about
100 milliseconds.

Page 19 of 27

! Import Screen - Function 9

This function may be used to import a previously-exported screen image to any valid screen,
including the live screen. Prior to calling this function, a valid screen image must have been
placed into RAM-0, starting on a page boundary (see the export function on page 17 for a
description of the image structure).

A screen may imported in BASIC as follows:

BANK 0:SYS DM,9,RP,T

where RP is the starting page in RAM-0 from which the screen is to be imported and T is the
target screen number. For example:

BANK 0:SYS DM,9,64,0
RREG EE,,,C:C=(C AND 1)
IF C THEN PRINT "ERROR";EE;"OCCURRED"

The above code will import a screen image from RAM-0 starting at address 16384 ($4000),
which is the 64th RAM page in the system. Since the import is to the visible screen in this
example, the display will immediately take on the characteristics of the image.

In assembly language, the above example would be as follows:

lda #%00111111
sta mmucr ;set configuration
lda #9 ;function number
ldy #>$4000 ;system RAM starting page
ldx #0 ;live screen is target
jsr dmfunc ;call function ($E000)
bcs error ;function not completed

Possible error returns are:

2 ($02) Invalid target screen number.

80CDM does not check the structure of the screen image in RAM-0. If the content is
improperly formatted or if the number of bytes in the display and attribute segments does not
conform to the VDC’s configuration, display corruption is highly likely. 80CDM disables
interrupt request processing during the import operation to maximize performance. A typical
import operation on a machine running in FAST mode takes about 100 milliseconds.

Page 20 of 27

STATUS LINE WRITER

The status line writer function, whose 80CDM jump table entry point is at $E007 or 57351
(DM+7), allows you to display text on the status line, starting at any desired column up to the
screen width. The text character set is determined by the attribute value that was passed to
80CDM when the status line was enabled (function 4). As previously noted, the status line is
unaffected by activity on the main part of the live screen. Therefore, the status line text will
remain untouched even if the screen is cleared or if a hidden screen is copied to the live screen.

To write text from assembly language, code as follows:

lda #%00111111
sta mmucr ;set configuration
lda #col ;zero-based column at which to print
ora #%10000000 ;set bit 7 to clear status line
ldx #<string ;null-terminated text string address LSB
ldy #>string ;null-terminated text string address MSB
jsr dsline ;call function ($E007)
bcs error

Column values range from $00 to width-1, where width is the display width in columns
(usually 80). Setting bit 7 of the column value will cause 80CDM to clear the status line before
writing the text. Setting both .X and .Y to zero will clear the status line only—the value in .A
will be ignored.

Possible error returns are:

0 ($00) 80CDM busy, relevant if called from an IRQ handler.

5 ($05) The text string is too long relative to the starting column value.

Programming example:

lda #%00111111
sta mmucr ;set configuration
lda #$0a ;start at column 10
ora #%10000000 ;clear status line before writing
ldx #<text ;text string address LSB
ldy #>text ;text string address MSB
jsr dsline ;call function ($E007)
bcs error ;error, error code in .A

;
text .byte "This is a test.",$00

Page 21 of 27

The text string should be printable PETSCII characters, not screen codes. Non-printing characters
in the text string will produce unpredictable results.

To accomplish the above from BASIC, it is necessary to POKE the text string into RAM-0, append
a zero byte and then call the status line writer function as follows:

BANK 0:SYS DM+7,CC,AD AND 255,AD/256

where CC is the starting column and AD is the address in RAM-0 to which the string was POKEd.
If AD is zero the status line will be cleared. To clear the status line before displaying the text pass
CC OR 128 as the column value. Alternatively, you can use the DSLINE.BIN utility, a
separately available program described on page 25, to access the status line writer. DSLINE.BIN
has a BASIC-friendly call syntax and requires no POKEing.

It is permissible to call this function from an interrupt handler.

Page 22 of 27

PROGRAMMING CONSIDERATIONS

As described in the introduction, 80CDM runs underneath the kernel ROM. During initialization,
80CDM will relocate the top of the BASIC program text area to protect itself from a very large
program. If an oversized BASIC program is subsequently loaded, an out-of-memory error will
occur rather than 80CDM being “stepped on.”

Once 80CDM has been loaded and initialized, you must be careful to not accidentally overwrite
any part of the bank $00 memory range 57344 ($E000) to 60620 ($ECCC) inclusive. Doing
so will either cause strange behavior or system fatality when 80CDM is called, the latter very
likely if 80CDM is called from within an interrupt handler.

80CDM reads the VDC configuration registers at startup, makes adjustments to the VDC’s
memory map, along with some changes to the screen kernel’s configuration, and thereafter
assumes that the change will remain intact. If your application changes the VDC configuration
in some way, such as setting up extra display rows, be sure to do this before initializing 80CDM.
Otherwise, 80CDM’s understanding of how the VDC is operating and how VRAM is organized
may be wrong, opening the door to display corruption when various functions are used.

In the same context, be careful with directly accessing the VDC hardware via the screen kernel
ROM routines (never PEEK or POKE any VDC register), as you may change the VDC’s
configuration in a way that is incompatible with 80CDM.

Pressing the Stop/Restore key combination will revert the VDC and screen kernel variables to
their power-on defaults. Should the use of Stop/Restore be necessary to regain control of your
machine, be sure to reload and initialize 80CDM. Although the program itself may be intact
following Stop/Restore, the system configuration will reverted to the power-on condition and will
not agree with what 80CDM thinks it should be. The only way to correct such a situation is by
reloading and initializing 80CDM.

If you wish to call 80CDM from an assembly language program, especially an interrupt handler,
you should first determine that 80CDM is present in memory. 80CDM includes a “presence
signature” that may be examined to determine if the program has been loaded, the pointers to this
signature being available at $E003 (LSB) and $E004 (MSB) in RAM-0 (equal to DM+3 or
57347 and DM+4 or 57348, respectively). The following assembly language code shows how
to detect 80CDM’s presence:

Page 23 of 27

lda #%00111111
sta mmucr ;set configuration
ldx dmsigptr ;80CDM signature pointer ($E003) LSB
ldy dmsigptr+1 ;80CDM signature pointer ($E004) MSB
stx zpptr ;zero page pointer
sty zpptr+1
ldy #0

;
l0001 lda (zpptr),y ;80CDM’s signature (we hope!)

cmp dmsig,y ;our version
beq l0002 ;so far, so good

;
jmp no_dm ;80CDM not present or overwritten

;
l0002 iny

tax ;test for null terminator
bne l0001 ;not done testing

;
;...80CDM present, keep going...
;
dmsig .byte "80CDM...BCS2008",$00

The text string at dmsig is case-sensitive. Note that the above test sequence doesn’t determine
if 80CDM has been initialized, only that it is present in memory and apparently intact.

Page 24 of 27

INTERRUPT-DRIVEN ACCESS

The screen blanker (function number 5) and the status line writer may be called from an interrupt
handler on a non-interference basis. 80CDM prevents a conflict between a foreground call and
an IRQ call by use of an internal semaphore. Foreground calls always have priority. If more than
one interrupt handler calls 80CDM, the first handler will have priority over the second.

In some cases, it may be desirable to determine the state of the semaphore before making an
80CDM call. You can test the semaphore as follows:

lda #%00111111
sta mmucr ;set configuration
jsr tstsem ;test the semaphore ($E00A)
bcc clear ;semaphore is cleared
bcs set ;semaphore is set

If the semaphore is set and a call is made to an 80CDM function, error 0 ($00), also called
“busy,” will be returned, indicating that 80CDM is processing a foreground call.

Another consideration with calling an 80CDM function as part of interrupt processing has to do
with screen kernel conflicts. 80CDM directly manipulates the VDC hardware to achieve best
performance and if called from an interrupt handler, may inadvertently alter a chip register that
was configured by the screen kernel immediately prior to the interrupt, possibly causing display
corruption. You can detect this condition by probing the stack to see if the RTI address of the
interrupted code is in the range $0C53C to $0CE4C inclusive. If it is, the call to 80CDM should
be deferred.

Page 25 of 27

DRIVING THE STATUS LINE FROM BASIC

Utilizing 80CDM’s status line writer from BASIC is awkward. To simplify status line text
displays from BASIC, a separate program, DSLINE.BIN, may be used.

From BASIC, call DSLINE.BIN as follows:

BLOAD "DSLINE.BIN",B0: REM load binary into RAM-0
SL=DEC("0B00"): REM define execution address
BANK 0:SYS SL,,,,,C,S$: REM call DSLINE

where C is the column at which to start writing and S$ is any string variable or string expression
containing the text to be written to the status line.

A call of the form:

BANK 0:SYS SL,,,,,C,"LITERAL TEXT STRING"

is permissible, as is something like:

BANK 0:SYS SL,,,,,C,A$+MID$(B$,2,5)+C$

A call such as:

BANK 0:SYS SL,,,,,0,""

will clear the status line—note the use of a zero as a placeholder for the column parameter. The
same will happen if a null string expression or variable is passed. Avoid embedding non-printing
characters in the string, as undesirable results may occur.

Upon successful processing of the text passed in S$, DSLINE.BIN will return control to your
program. In the event of an error, your program stop with one of the following BASIC errors:

Syntax Self-explanatory, usually caused by an incorrect number
of commas between the SL and C parameters or a missing
parameter. Note that five commas are required between
SL and C.

Illegal Direct DSLINE.BIN is a run-mode only program, as it uses the
BASIC input buffer at $00200 to process the string.

Page 26 of 27

String Too Long The text string length relative to the starting column
value is excessive. The maximum permissible string
length is MC – C, where MC is the display width in
columns (normally 80) and C is the column parameter
passed in the call to DSLINE.

Type Mismatch Caused by passing the wrong variable type in one or both
parameters.

Unimplemented Command 80CDM was not detected in memory, has not been
initialized, or the status line has not been enabled. This
error will always occur on a 16 KB VRAM system, since
the status line function cannot be supported on such a
machine.

The current version of DSLINE loads into the tape cassette buffer at 2816 ($0B00) in RAM-0
and uses memory up to and including 3069 ($0BFD). If that memory range must be overwritten,
it will be necessary to reload the program before attempting to use it. If you wish to relocate the
program, edit the _ORIGIN_ assignment in the source code and reassemble. See DSLINE.ASM,
which is included with the distribution. Be sure to read all notes in the source code before making
changes.

Page 27 of 27

80 Column Display Manager copyrighted ©1987 by BCS Technology Limited. All rights reserved.

BASIC Status Line Writer copyrighted ©1987 by BCS Technology Limited. All rights reserved.

)))

Permission is hereby granted to use, copy, modify and distribute the 80 Column Display Manager software, either as
stand-alone code or as part of a package. In all cases, BCS Technology Limited requires that a copyright

acknowledgment worded as follows must be present in any documentation included with the distribution of the 80
Column Display Manager software:

Portions of this software copyright ©1987 by BCS Technology Limited. All rights reserved.

The above copyright acknowledgment must also appear at least once in the source code of the package into which the
80 Column Display Manager software has been integrated. If distributing the 80 Column Display Manager software
as stand-alone code, the copyright header present in the original source code published by BCS Technology Limited

must be retained unedited.

Redistribution of this software in any form must be at no charge to the end user. This code or any part thereof,
including but not limited to any derivation, MAY NOT be incorporated into any package intended for sale, unless
written permission to do so has been granted by BCS Technology Limited.

THERE IS NO WARRANTY OF ANY KIND WITH THIS SOFTWARE. While it is believed that all code will perform as
described, the user assumes all risk in connection with the incorporation of this software into any system. If any of the
aforementioned provisions are not acceptable, do not distribute or use this software, and immediately delete it from
any system on which it has been installed.
)))

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31

