
S O C 1 T L T 199JUNE 1983

Everyone’s Guide to
Assembly Language, Part 33

This month’s discussion deals with a new version of our beloved 6502
microprocessor known as the 65C02. Although the chip has just been re­
leased within the last few months and has yet to find its way into the
mainstream of computers, it seems likely that we’ll be hearing more
about this item in the upcoming year.

Before jumping right into its new functions, though, let’s first get a
little background information out of the way.

The 6502 was apparendy first designed by Commodore Business Ma­
chines, and, as of the present, 70 percent of its use is by Apple, Atari, and
Commodore. The current manufacturers of the 6502 are Rockwell Inter­
national, MOS Technology, and Synertek. As sometimes happens with
these things, though, some of the key persons involved with the 6502
went to work at a new company, Western Design Center. This com­
pany, then, is the original source of the new 65C02 chip. But the story
doesn’t end there. Western Design Center has sold the design to at least
three independent manufacturers, Rockwell International, GTE, and
NCR. These companies took the initial 65C02 design, corrected initial
design errors, and added their own enhancements.

The picture at this point is that each of these three companies will be
marketing its own version of the 65C02. The chips are more or less the
same, but the Rockwell chip has the largest instruction set.

“Largest instruction set,” you ask? Yes! The new 65C02 has had the
old 6502 instruction set appended with a variety of new instructions. Be­
cause the Rockwell chip appears to be a superset of all the other chips,
the bulk of this article will assume that it’s the chip that’s being used. At
the end of the article we’ll describe differences among the three chips.

The Rockwell chip has a total of twelve new instructions and two
new addressing modes. In addition a number of addressing modes not
previously available to an instruction (such as the immediate mode for
the BIT instruction) are now available. There are a total of fifty-nine
actual new op-codes. The meaning of all these numbers will become clear
shortly.

New Addressing Modes. Since this is one of the smaller numbers,
let’s start here. You’ll recall from many earlier discussions that each 6502
instruction has up to six addressing modes. That number is arrived at by
counting some modes as mere variations of others and not including the
value (relative addressing) associated with branch instructions (BEQ,
BNE, BCC, BCS, and so on) as an addressing mode here. To refresh
your memory, a list of modes and variations is provided in table 1 for the
LDA (load accumulator) instruction.

Indirect Addressing. The first of the two new addressing modes is

Addressing Mode Common Syntax
Absolute
Zero Page
Immediate
Absolute,X
Zero Page.X
Absolute,Y
(Indirect,X)
(Indirect),Y

LDA $1234
LDA $12
LDA #$12
LDA $ 1234.X
LDA $12,X
LDA $1234,Y
LDA ($12,X)
LDA ($12),Y

Table 1. Addressing modes,

quite easy to explain because it is essentially another variation of an exist­
ing mode. The new mode is indirect addressing. This may sound very fa­
miliar because this is similar to the instructions used to access memory
locations via a zero-page pointer. Usually, though, the Y register is set
to zero or some other value, which is then added to the address indi­
cated by the zero-page pointer to determine the address of interest.

This is fine for addressing a large table of data, but many times we
are interested in only one byte of memory, and must then go through the
obligatory LDY #S00 to properly condition the Y register. (See entries 5
and 6 in table 1.)

The new instruction allows us to ignore the contents of the Y register
and gain access to the memory location directly. This conserves two
bytes of code for each reference, since the Y register does not have to be
loaded. If you want to scan a block of memory, such as for a table, this
instruction can still be used if you are willing to INC or DEC the zero-
page pointer accordingly.

This new addressing mode is available for the instructions listed in
table 2.

Instruction and Common Syntax

ADC ($12)
AND ($12)
CMP ($12)
EOR ($12)
LDA ($12)
ORA ($12)
SBC ($12)
STA ($12)

Table 2. Instructions with indirect addressing.

Indexed Absolute Indirect. The second new addressing mode has a
name that was obviously not designed with easy recall in mind. For­
tunately, this too is a variation on an existing theme and as such should
be easy to remember. In the past, we had indexed indirect addressing. We
called this mode preindexed for clarity’s sake. Item 5 in table 1 is an ex­
ample. Preindexing means that the contents of the X register are added
to the address of the zero-page reference before using the sum of those
numbers to determine which zero-page pair to use. For example, the in­
struction LDA ($22,X), where the X register held the value 4, would
actually use bytes $26,27 to get the final destination address.

This differs from indirect indexed, which we refer to as postindexing.
In postindexing, the value of the Y register is added after the base ad­
dress is determined. For example, in the instruction LDA ($22), Y, where
the Y register holds the value 4 and $22,23 point to location $1000, the
memory location accessed would be $1004.

You’ll recall also that pre- and postindexing were limited in their use
of the X and Y registers. Preindexing could use only the X register and
postindexing only the Y. Before you get too excited in anticipating the
possibilities of the new instruction, restrain yourself: This much has not
changed.

What has changed is that preindexing is no longer limited to zero-
page pointers. The new mode allows any two-byte value to be used. This

JUNE 1983200 4jjn O [
means that the X register can be added to the base address of a table of
memory pointers that previously could only have been located on the
zero page of memory.

Addressing Mode Common Syntax
8. Indexed Absolute Indirect LDA ($1234,X)

For example, suppose you had a command interpreter that accepted
a command value between 0 and 2. With the 6502, such an interpreter
could be used in conjunction with a JM P table located on page zero, con­
structed as in the following example:

T A L K
Instruction and Common Syntax
ADC ($1234,X)
AND ($1234,X)
CMP ($1234,X)
EOR ($1234,X)
LDA ($1234,X)
ORA ($1234,X)
SBC ($1234,X)
STA ($ 1234.X)
Table 3. Instructions with indexed absolute indirect addressing. * 1 2 3

JMP DATA TABLE:
20: 80 10
22: AO 10
24: CO 11

1
2
3

•SAMPLE COMMAND PROCESSOR*

4
5 OBJ $1000
6 TABLE EOU $22

1000: 20 00 40 6 ENTRY JSH GETCMD ; GET VAL FR O M O -2
1003: AA 9 TAX ; PUT IN X REG
1004: 7C 22 00 10

11
12

GO JMP (TABLE,X) ; EXECUTE PROPER ROUTINE

...MORE CODE HERE...
1060: EA SO CMD1 NOP ; FIRST ROUTINE

51 .MORE CODE HERE...
10A0: EA 100 CMD2 NOP ; SECOND ROUTINE

101 ...MORE CODE HERE...
11C0: EA 150 CMD3 NOP ; THIRD ROUTINE

151 ...MORE CODE HERE...

This is a very fast and effective technique, but for a large set of com­
mand routines it can chew up valuable zero-page memory very fast.
Wouldn’t it be nice if we could put the table somewhere else? With the
new addressing mode you can. The table could now be put, for example,
at $1200, with line 6 modified accordingly. This would free up six bytes
of valuable zero-page real estate.

Table 3 shows the instructions that can use this new mode.

New “Standard” Addressing Modes. There are a few instructions that
have addressing modes that are new just to them. For example, two of
the most exciting ones are INC and DEC.

Previously, any uses of INC and DEC were limited to memory loca­
tions. In addition (so to speak), using the X and Y registers was the only
way to maintain a simple loop counter without using a dedicated memo­
ry location. The surprise here is that INC and DEC will now work on the
accumulator. This is nice because you can now maintain a counter in the
accumulator, or even do fudging of flag values as they are being handled
in the accumulator.

Some future assemblers may require the “somewhat usual” (if not in­
convenient) use of DEC A or INC A as they seem to prefer for LSR,
ASL, and other operations on the accumulator.

The BIT instruction also allows some additional addressing modes
that may prove useful. Previously, the BIT instruction supported only
absolute addressing. That is to say that a directly referenced memory lo­
cation was used as the value against which the accumulator was op­
erated on.

Addressing Mode Common Syntax
Absolute BIT $1234
Zero Page BIT $12

This is useful for testing a memory location for a given bit pattern,
but not directly suitable for testing the bit pattern of the accumulator.
For many operations, this means you have to rather artificially load
some memory location with the value you wanted to compare to the
accumulator.

The new 65C02 supports three new addressing modes for the BIT
instruction:

1. Immediate BIT#$12
2. Absolute,X BIT$1234,X
3. Zero Page,X BIT $12,X

At Last, the Real Scoop! Of course, the real question lurking in
everyone’s mind is: “But what are the new instructions?”

The great thing about the 65C02 is that not only are many of the old
instructions enhanced, there are a number of absolutely terrific new in­
structions—twelve, to be exact.

The new instructions are shown in table 4.

BBR Branch on bit reset (clear)
BBS Branch on bit set
BRA Branch always
PHX Push X onto stack
PHY Push Y onto stack
PLX Pull X from stack
PLY Pull Y from stack
RMB Reset (clear) memory bit
SMB Set memory bit
STZ Store zero
TRB Test and reset (clear) bit
TSB Test and set bit

Table 4. New instructions in the 65C02.

So what exactly do these instructions do? Well, let’s examine some oT
the easy ones first: PHX, PHY, PLX, and PLY.

Commands for pushing a byte onto the stack and pulling a byte off
the stack exist for the accumulator but not for the X and Y registers in
the 6502. One of the more common uses for the stack is to save all the
registers prior to going into a routine so that everything can be restored
just prior to exiting. Ordinarily, to save the A, X, and Y registers, we’d
have to do something like this:

ENTRY PHA ; SAVE A
TXA ; PUT X IN A

JUNE 1983 203S O F T T T T
PHA SAVE IT
TYA PUT YIN A
PHA SAVE IT

WORK NOP YOUR PROGRAM HERE
DONE PLA GETY

TAY PUT IT BACK
PLA GETX
TAX PUT IT BACK
PLA GET A

EXIT RTS

The problem is complicated even further in programs like the char­
acter generator listed in the April issue. There we had to refer to the origi­
nal value of the accumulator several times and this interfered with any
simple way to push all the register data onto the stack.

With the new 65C02, this could all be resolved with the following
ENTRY PHX SAVEX

PHY SAVEY
PHA SAVE A, BUT LEAVE IT ON TOP

WORK NOP THE PROGRAM HERE
DONE PLA GET A

PLY GETY
PLX GETX

EXIT RTS
All four are one-byte commands, addressing only the indicated

register.
BRA (branch always) is one of those instructions that will thrill writ­

ers of relocatable code. One of the techniques for writing code that is lo­
cation-independent involves the use of a forced branch instruction,
such as:

CLC ; CLEAR CARRY
BCCLABEL ; ALWAYS

Unfortunately, this means we must force some flag of the status
register, which may not be convenient at the time. In addition, the proc­
ess takes up an extra byte on most occasions.

Branch always alleviates both these problems by always branching to
the desired address, subject of course to the usual limitations of plus or
minus 128 bytes as the maximum branching distance.

It is worth mentioning, in the interest of programming style, that
many people indiscriminately use a JM P to go back to the top of a loop
when a branch instruction would do the trick; this only adds one more
limitation to the final code in the process. Hopefully, this new branch in­
struction will encourage people to make their code more location-inde­
pendent. BRA, like the rest of the branch instructions on the 6502, uses
only relative addressing.

STZ (store zero) is used for zeroing out memory bytes without
changing the contents of any of the registers.

Many times it is necessary to set a number of internal program regis­
ters to 0 before proceeding with the routine. This is especially needed in
mathematical routines such as multiplication and division.

Ordinarily, this is done by loading the accumulator with 0 and
then storing that value in the appropriate memory locations. This is easy
to do when you have to load the A, X, or Y registers with 0 anyway. The
problem is that on occasion the only reason one of the registers is loaded
with 0 is because of the need to zero a memory location.

Store zero allows us to zero out any memory byte without altering
current register contents. Not all of the addressing modes usually avail­
able to STA, STX, or STY instructions are available with STZ, though.
Table 5 shows what modes are available.

Addressing Mode
Absolute
Zero Page
Absotute.X
Zero Page.X

Common Syntax
STZ$1234
STZ$12
STZ $ 1234.X
STZ$12,X

Table 5. STZ addressing modes.

SMB and RMB (set/reset memory bit) will allow you to set or clear a
given bit of a byte in memory. Previously, this would have required three
separate instructions to achieve the same result. For example:

LOA MEMORY
AND#$7F

STA MEMORY

LOAD VALUE FROM MEMORY
%0111 1111 IS PATTERN
NEEDED TO CLR BIT 7
PUT IT BACK

With the new instruction, we can accomplish the same thing with:
RMB7 MEMORY ; RESET (CLR) BIT 7 OF MEMORY

or set the bit again with:
SMB7 MEMORY ; SET BIT 7 OF MEMORY

Two interesting things to note here. The first is that for some reason
they use the term reset instead of clear to indicate the zeroing of a
given bit.

The second item is that we now have four-character instruction codes
(mnemonics), the last character being the number of the bit being acted
on. What problems this may cause in some assemblers remains to be
seen, but this new species of instruction seems to have arrived.

These instructions are limited to zero-page addressing only.
BBS and BBR (branch on bit set/reset) are two new branch instruc­

tions that make it possible to test any bit of a zero-page location and then
branch, depending on its condition. This instruction will be very useful
for testing flags in programs that need to pack flag-type data into as few
bytes as possible. By transferring I/O device registers to zero page,
it is also possible to test bits in these registers directly for status-bit
conditions.

These instructions are very similar in appearance and use to the bit
set and reset instructions just discussed. They, too, use four-character
mnemonics. The difference is, of course, that we are testing bit status,
rather than changing it. These are three-byte instructions, the first byte
being the op-code, the second being the byte to test, and the third a rela­
tive branch value. In assembly, these commands will actually require two
labels!

One of the first applications is the testing of whether a number is odd
or even. Previously, this had to be done with an LSR or ROR instruc­
tion, followed by a test of the carry flag, such as:

LDA MEMORY
LSR
BCS ODD
BCC EVEN

LOAD A WITH VALUE
SHIFT BIT 0 INTO CARRY
SET IF ODD
CLRIF EVEN

The equivalent can now be done without affecting the carry flag or

Just Released

Font DownLoader
Expand the capacity of your printer hundreds of times

Load custom fonts into your Apple® Matrix Printer, f: ;
Prowriter® 851OA, OKI® Microline 92, 93* and ■ r t 4
Epson® FX* and use them with virtually every (■ *
word processor to turn your printer into a / ' -> f- OD
custom typesetter. After the fonts are ^
loaded, they will stay in your 1
printer until it’s turned off. A
font editor is also provided
to allow you to create
your own graphics, text,
foreign language letters,
math and electronics
symbols to load into your
printer. *Available in 30 days

Disk Software only

•i A 0 III- <0-
Vf W = O F l \

n

.$39.00

$100 REWARDSr > :Submit the best or most unique font using the above
software and we will make you $100 richer. Other

| prizes for the first 25 runners up.

Dealer and Distributor
Inquiries Invited Designed by RAK-Were

micromwtra
1342 B Rt. 23, Butler, NJ 07405

201 838-9027

204 ̂o e i m JUNE 1983

the accumulator
BBRO MEMORY, EVEN ; BRANCH IF BIT 7 = 0 = EVEN
BBSO MEMORY, ODD ; BRANCH IF BIT 7 = 1 = ODD
This could be useful also in creating drivers for the new Apple He

eighty-column extended memory board since this card uses one bank of
memory or the other for the text screen, depending on whether the screen
column position is odd or even,

TSB and TRB (test and set/reset bit) are the most complex of the
new instructions. These instructions are rather like a combination of the
BIT and A N D/OR A instructions of the 6502.

The instructions seem primarily designed for controlling I/O devices
but may have other interesting applications as things develop.

The action of these two instructions is to use a mask stored in the ac­
cumulator to condition a memory location. The mask in the accumula­
tor is unaltered, but the Z flag of the status register is conditioned based
on the memory contents prior to the operation.

For example, to set both bits 0 and 7 of a memory location, we could
use the following set of instructions:

LDA #$81
TSBMEM1
BNEPRSET
BEQ PRCLR

%1000 0001 - MASK PATTERN
SET BITS 0,7 OF MEMORY
ONE OF THESE WAS 'ON' ALREADY
NEITHER OF THESE WAS 'ON' ALREADY

This would clear the bits:
LDA #$81
TRBMEM2
BNE PRSET
BEQ PRCLR

%1000 0001 = MASK PATTERN
CLR BIT 0,7 OF MEMORY
ONE OF THESE WAS 'ON' ALREADY
NEITHER OF THESE WAS 'ON' ALREADY

These instructions use only absolute and zero-page addressing.
Other Differences. There are a number of other differences in the

chips, most notably the power consumption. The power use of the 65C02
is one-tenth that of the 6502, so the chip runs considerably cooler. The
lower-power requirement opens new possibilities for portable computers
and terminals.

One point of interest is that the old 6502 indirect jump problem has
been fixed. If you’re not aware of it, the 6502 has a well-documented
problem with indirect jumps that use a pair of bytes that straddle a page
boundary.

For example, consider these three instructions:
Instruction
JMP ($36)
JMP ($380)
JMP ($3FF)

Pointers Wanted
$36,37
$380,381
$3FF,400

Pointers Used
$36,37
$380,381
$3FF,300

Notice that, in the third instance, the pointers used are not those
anticipated. This is because the high byte of the pointer address is not
properly incremented by the standard 6502.

This problem has been fixed on the 65C02. The only possible prob­
lem here is “clever” protection schemes that use this bug to throw off
people trying to decode the protection method. Otherwise, this should
not present any problems to existing software.

Are there any problems to be anticipated? In theory, no. The new
65C02 is compatible pin for pin with the old one, and also upwardly
compatible in terms of software. Software for the Apple, PET, Atari, or
other 6502-based microcomputers should work without problems with
the new chip. Are there any exceptions? Unfortunately, yes.

The first big problem concerns internal microprocessor timing on the
Apple II and II Plus computers. The Apple II and II Plus do not handle
the microprocessor clock cycles in the same way the lie does. On the sur­
face, the 65C02 should directly replace the 6502; however, because the
65C02 is a faster chip, data is not available for as long, and bits can get
lost. What this means for now is that the 65C02 can be used only on the
Apple lie and Apple HI machines. None of the manufacturers at this
time produce a chip that works on the Apple II or II Plus. It can be ex­
pected, though, that revisions will be made in the near future that will al­
low the 65C02 to be implemented in the older machines.

There is also a possibility of problems with some existing software. A
small percentage of software may be using undocumented bugs or “fea­
tures” of the old 6502 chip, and these might not function as anticipated.

For example, a reasonable question might be, “Where did all the new
op-codes come from? After all, wasn’t the chip full?” To answer this, con­
sider how the instructions we use now are structured. The 6502 operates

by scanning memory and performing specific operations based on the
values that it finds in each memory location. You would then expect a to­
tal of 256 possible op-codes. As it happens, all 256 possible values are not
used. It is this group of unused op-codes that allows for the new instruc­
tions and also creates the possibility o f a small percentage of difficulties
with existing programs.

Although rarely documented, the previously “unused” values will
cause certain things to happen, much the same way that a legal value
would. For instance, the code SFF on a 6502 is labeled as an alternate
NOP. This is one of the codes that have been converted to a new func­
tion in the 65C02, namely BBS7 (branch on bit 7 set).

There are other unused codes, though, that have combination ef­
fects, usually of little use, such as loading the accumulator and decre­
menting a register at the same time. Their main application is similar to
the indirect jump problem: creating code that cannot be casually inter­
preted. If these instructions have been used in existing software, prob­
lems could arise with the 65C02.

With such difficulties, then, why bother to substitute the new 65C02
into an existing Apple? The answers are varied.

First of all, the 65C02 is likely to appear in upcoming releases of ex­
isting computers (in a new release of the He, perhaps?), and as such you
can experiment now with the newest version of this versatile device.

Second, there will likely be specific applications where the advan­
tages of the chip will make it worth supplying with the software, since the
disadvantages are practically nonexistent for the Apple I Ie and Apple III.
Code rewritten to take advantage of the new instructions can be expect­
ed to be 10 to 15 percent smaller and run proportionally faster. In cer­
tain applications, even greater improvements could be expected.

At this writing, the Rockwell chip seems to have the largest set of in­
structions of the three varieties available. The GTE and NCR chips lack
the bit manipulation instructions but are otherwise identical.

As to assemblers supporting the instructions, the current version of
Merlin supports all the new op-codes in both the assembly and Sourceror
portions of the product. S-C Software is offering a 65C02 cross assem­
bler to registered owners of the S-C Assembler at a reduced rate. Hay­
den will be offering an update to ORCA to support the GTE version of
the chip. Any assembler that supports macro capabilities should be able
to be used immediately by defining the proper hex codes.

If readers have any unique problems or questions about the 65C02,
send them to Softalk; if possible, the answers will be published in a sub­
sequent issue.

This installment marks the last in this series. I want to thank the
many readers of this column over the last several years for their enthusi­
astic support and valuable suggestions. I have always believed that the hu­
man element to this industry, and in fact any endeavor, is the truly re­
warding part. I would also like to thank Softalk for giving me the op­
portunity to share the excitement of programming with its readers, and
also thank Brian Britt for his help in researching this month’s article.

For better or worse, though, you’re not likely to be completely rid of
me. There are rumors of other columns and projects, and I look forward
to being a small part of the Softalk family for some years to come.

It was nearly three years ago that Roger Wagner's Assembly Lines be­
gan appearing in Softalk, the magazine was only one month old. In that
first year, Wagner’s column elicited more mail from Softalk’s readers than
any other feature, and properly so: It was the first time assembly language
had been explainedfrom step one. In fact, in his first column, Wagner didn't
even introduce a command.

With this issue, Roger Wagner's Assembly Lines ends. The first years
columns plus appendixes and revisions have been available fo r some time in
Assembly Lines: The Book. Volume 2, covering the rest o f the columns,
will be released shortly by Softalk Books.

Roger Wagner will not fade away. He's planning occasional feature ar­
ticles fo r Softalk and he's promised to remain available to answer questions
from Softalk readers.

Next month, a new assembly language tutorial will begin, back at step
one. The new column will be written by Jock Root, a frequent guest review­
er in Softalk and the author o f'T Ind Grade Chats: A Custom Menu Gen­
erator" in May. 31

