— :
B.'L.J. Technical Systems —y-' L.J. Electronics -

EMMAII EMMAIII

User Manual
(7 User Manual

e Ovtasecne g oy

w203, -

© LJ Electronics Ltd Written by LJ Technical Publications Dept.

This publication is copyright and no part of it may Designed, Typeset and Produced by LJ Publicity
be reproduced without our written permission Dept. 1986, second issue.

Issue Number MP116/E

EMMA Il User Manual EMMA Il User Manual
Contents
[Introduction to EMMA II]
Chapter Page
1 EMMA Il Key Functions 5
2 EMMA Il Switch-On 7
3 User Memory 15
4 Instruction Addressing Modes 17
5 Writing A Program 19
6 Use Of Input/Output Ports 29
7 Interrupts 35
8 Hardware Timers 43
9 Program Debugging 52
10 Using The Cassette Interface 57
11 Useful Routines/Subroutines 60

LAppendices

Appendix A 6502 Instruction Set 72
Appendix B Conversion Tables 98

MP116,

EMMA Il User Manual

EMMA Il User Manual

Introduction to EMMA I

General Description

The EMMA Il User Manual provides an introduction to the LJ EMMA,
an educational microcomputer system, based on a 6502
microprocessor.

Designed to introduce the EMMA system in a straight forward step by
step manner, this manual will make the user familiar with the
instructions used to program the 6502, together with providing an
awareness of system architechture. It also illustrates the many
possibilities for further applications using this expandable system.

The EMMA Il Technical Manual provides the user with the more
detailed information on the system architecture and the software
operation.

As the user becomes familiar with the EMMA it will become evident
that applications control is a major function of the system.
LJElectronics provide a wide range of equipment designed for more
advanced studies These include

® Arange of Applications Hardware Modules: simple advanced,
digital control.

@ VISAExpansion unit- providing Video Interface, ASSEMBLY
language and BASIC language programming, EPROM
programming, Floppy Disk interface.

® 6502 Trouble Shooting System

@ 6502 Development System

® Robotic Teaching Systems with trouble shooting

EMMA llis a fully assembled and tested microcomputer requiring

only a +5V, approximately 700mA, regulated d.c. supply to

commence computing.

The system is built around a 6502 microprocessor, and has a
crystal controlled clock operating at 1 MHz.

A monitor program and useful sub-routines are storedina 2716
EPROM.

Usermemory is available using a 2k byte RAM.

Animportant feature is the Input/Output port (I/O Port) capability
whichis provided by the 6522 Versatile Interface Adaptor (VIA) and
includes, amongst other features, two 8-bit programmable I/O ports.

Keyboard and display interface is provided by the 6821 Interface
controller.

The 6502 microprocessor is capable of addressing 64K memory. On
the EMMA i only a limited amount s decoded. The required address
decode is selected by links placed in ani.c. Header. This gives the
user access to modify the address decoding if required. The
arrangement is shown below for the unexpanded EMMA II.

Wire Link Decode Select

(As viewed from bottom of board)

The hardware of EMMA Il is arranged to allow the easy identification
of sections as shown opposite on page 3.

The cassette interface provides a facility for the rapid retention of
programs on a standard cassette recorder. Connection to the
recorder is made via 0.1” pins on EMMA Il and the cassette DIN
input/output socket or the external microphone/earphone
connectors.

Communication with EMMA li is through the keyboard/display
although you will soon make use of the I/0 port which is brought out
to 4mm sockets on the left-hand side of the microcomputer board.
These sockets are designated PA0O-PB7 and provide the input/output
connections to I/0 Ports A and B respectively. Also available are
4mm sockets for interrupt facilities - these are used extensively in
work associated with Application Modules.

Power supply to the board is made via 4mm sockets, two sockets
being provided for the +5V connection and two for the OV
connection. The provision of two sockets for each line faciitates the
looping of supplies to other system items.

Access to all bus lines and the various control signals are made
through 0.1” printed circuit board (p.c.b.) pins. These are used for
System Diagnosis and Fault Finding exercises.

EMMA Il User Manual

EMMA |l User Manual

The single step facility on the bottom right hand side of the board is a
Debug Facility, and will be described later in the manual. For normal

use this switch must be in the ‘OFF " position.

Before switching ON familiarize yourself with the control key
functions.

b @
b @
~O
e
e}
e
e @
- ®
~©
~Q
~ O
»Q
Y]
)
;_@ R) o
2. O S

Chapter 1 EMMA |I Key Functions

The EMMAlI
kesboard/display

The EMMA Il keyboard/display unit provides all the necessary
controls for EMMA Il except for the Address Decode Patching
Header and the Reset Pushbutton.

The keyboard s splitinto two well defined key groupings:

@ Hexadecimal Keys - These are the matrix of sixteen keys
marked 0-9and A - F. They are used to input all data, example:
user programs, data tables.

@ Control Keys - These are the matrix of eight keys marked,
M,G,P.S,L,R,+ and —. These keys have well defined functions

as below.
Control Keys Hexadecimal Keys
1
M| L C|D|E|F
GIR 8 9 A|B
P+ 4|56 |7
S| - oj1|2|3

@ Mkey - used to select the memory mode. For example the
seven segment display may show either a memory address
oramemory address and its content. Depression of Mwill
alternate these modes.

B +(plus) and — (minus) - used to increment or decrement the
program entry address. For example if the current address
being displayed is 0020, pressing the + (plus) key will
increment this to 0021. The use of these keys greatly facilitates
program entry and subsequent checking before runninga
program.

EMMA Il User Manual MMA Il User Manual
hapter 2 EMMA |l Switch-on

@ Program Run - The G key causes the program to Run
(be executed). In practice having entered a program, G will be
pressed and the start address of the program then keyed in.

Pressing G again will cause the program to be executed. Connect EMMA i to the 5V, 3A supply outlet of an LJ Electronics

System Power 90 carefully ensuring that the polarity is correct.

i i ight-hand of the microcomputer
Program Debug - Key R provides a single step feature and Pressthe Resgt button (bot.tom rig| { N
Key P ameans of inserting a forced break into a user program. board) and notice that the display shows eight decimal points.
Both these keys are essentially for program debug and are fully
discussed later in this manual.

[R]
(e

Program Dump - EMMA Il provides a feature for dumping (]
programs onto magnetic tape using a conventional cassette
tape recorder. Keys S and L are used to control this feature,
S being for store onto tape, while L loads the microcomputer This indicates that the monitor programis running and the
memory from tape. Both are discussed later. microcomputer is ready to accept information from the keyboard.
These key functions are designated by the microcomputer monitor Itis also reasonable to assume that the microcomputer systemis
program. They may, however, be redesignated temporarily under operating correctly.
user program control. They will assume normal function upon
returning to the monitor program. Press the control key ‘M’ (memory key). The display will now
indicate:

We will now follow a switch-on routine and familiarize ourselves with
the actual EMMA Il keyboard/display.

FLK KK K

Where * ** * is a 4 digit hexadecimal address between the values
0000 and FFFF.

This display can be modified by depressing the desired sequence of
hexadecimal coding keys.

e.g.press0020

The display now shows:
i,y
1 1 iy 12 |1
o
6 7
EMMA Il User Manual

EMMA Il User Manual

Now perform the following operation:

Operation Display COMMENTS

This is the address of the lowest user memory in EMMAII .
Press Reset « ¢« « s+ « «« « Monitorrunning
Now press the ‘M’ key again. The display will now show the data

stored at the location indicated by illuminating the two right-most PressControl I, % X X X | Address field only

7-segment displays. Example, if the address part of the display keyM illuminated and
shows A.0020 then pressing ‘M’ will cause the display to show: showing arandom
address.
— @® PressHex - Address field indicates
- :j =_} |:‘ l—’. * % J keysoozo OO 20, address high byte (00)
o - - - address low byte (20)
® PressHex = Address modified
) keys 0238 RLOGez8 | 100238
where " * are any two hexadecimal digits. Pressing any of the
hexadecimal coding keys will modify this data. ® PressM R.OZ23E X% Addessfieldand
ta field illuminated
Now press keys A, B, C, D, E and F and observe that some dDz‘aa ;;I?!Is:gw;a e
characters onthe display are in capitals and some in lower case. random data stored at
location 0238.
[=_I [I_: ‘_ :_ ® PressHex R0 2 38 MS Datafieldshowsdata
o — o — keys 45 (45) input to location
0238.
. - The function of the control keys plus (+) and minus (—) can now be
. — — i explored. These increment (increase by one) and decrement
Note:the letter 1| andthe number I} are similarand care (decrease by one) the displayed address field when in the data
. mode. They provide a convenient way of sequentially moving
must be taken notto misinterpret these two characters. through a series of addresses when entering a program or simply
checking a program already entered without having to continually
We refer to the two parts of the display (as used above) as the use the M control key.

Address Field and Data Field respectively.
Before we can actually write a program we need to have some

knowledge of the machine Instruction Set. There is aninstruction

Example:

setfor the 6502 in Appendix A, since the EMMA Il is based upon
this microprocessor.

= e e [fe Y =

L 1 T | i | ° [) However, for convenience, we will reproduce part of an instruction
that we will be using to form our first simple program.

L] L]
T T
Address Field Data Field

EMMA Il User Manual

EMMA I User Manual

You will notice that we have terminated our program using a Jump
instruction.

Memory locations 0080 can be loaded with data to be transferred
and 0081 with 00 to be written over.

Data Bytes Comments
Address 1 2 3

Data (FF) to be transferred
Data (00) will be over written

0080 FF
0081 00

You may notice that we are going to load memory location 0080 and
0081 with FF and 00 respectively. We have deliberately put 00 in
0081 so that we will positively know that FF has been transferred.

We will now try entering an actual program.

LDA Load Accumulator with Memory LDA A Simple Program ® Program Task
E le Transfer the contents of memory M1 to memory M2.
Operation: (M)—A NZCIDYV Xxamp
Vv s All data movements must be made through the accumulator;
Addressing Mode Assembly Language | Op Noof Noof hence the TASK is executed by
orm Code Bytes Cycles
LOADING the data in memory M1 into the accumulator A.
Absolut LDAO, AD 3 a .
solute pet STORING the data transferred from M1 into memory M2.
Our program, using mnemonics, is
Instructions are as shown, from the instruction set.
LDA M1
We should notice the following: STA M2
@ Theoperationis clearly stated as: If we now assign addresses for M1 and M2 we get
“Load accumulator with memory”
) LDA 0080
Itis also symbolized by: (M) — A which means: “Transfer the STA 0081
contents of memory M to the accumulator A"
L where 0080 and 0081 are two absolute addresses with the high
@ AMnemonicis given: byte (00) specified before the low byte (80).
LDA Note: Itis normal to refer to addresses high byte first
ing: “ followed by low byte e.g. 0080 and 0081. However, when
meaning: “Load Accumulator” entering a program in memory, the machine requires that
i we reverse this order.
® Anaddressing mode is given:
Absolute Using the STA instruction to store accumulator in memory location
0081 and assigning addresses we get:
This indicates that the data s to be found at the absolute address
specified by the two bytes following the Op. Code.
0020 LDA 0080
@ The format of the Assembly Language instruction is given: 8(352 STA o081 Nextinstruction op code
LDA Oper
where LDA specifies the Operation to be performed and is to
be followed by an operand. In our case the operand s a two byte
absolute address.
Now let’s see how we can employ this instruction and othersina
simple program.
10 1
EMMA 1l User Manual EMMA Il User Manual
)) ! Program Entry RESET EMMA Il Press Reset
Ol_.lr.program (using a standard programming sheet) would look like Obtain Address Field Press MKey
this: Set 1st Address (0200) Press0,2,0and0
Obtain Data Field Press M Key
Standard Programming Form Modify Data Field SetAD
Increment Program Press + Key
Programmer: Program Title: 1st Program Modify Data Field Setto80
Increment Program Press + Key
Hexadecimal Symbolic Assembler Instructions Continue until programis entered.
ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS
Now Load Data.
Program
. Obtain Address Field - PressM
0200 AD 80 00 LDA M1 oAgg(v)ess ofMtis Set Address (0080) - Press0,0,8and 0
Obtain Data Field - PressM
0203 8D 81 00 STA M2 Address of M2is| Enter Data - Press FF
0081
Continue for 0081
0206 4C 06 02 JMP 0206 Terminates
program You should now have entered the whole of the program and the data.
Data Itis advisable to check this by looking at each loaded location. You
0080 ? Single byte of may do this by incrementing or decrementing through the locations
unspecified and the respective data.
datatobe
transferredto Now let's run the program!
memory
0081
0081 Program Run Press control key G (G stands for ‘GO") - the display should now
show:

| K| K| K| K

where ™ ** " is some random address.

Using the hexadecimal coding keys, modify this random address to
the start address of the program e.g. 0200

Display:

Pressthe gokey, G, again.

EMMA |l User Manual EMMA il User Manual

Chapter 3 User Memory

You will notice that the display has gone blank. To check whether the

program has indeed run successfully we now need to inspect the

memory location into which we transferred the contents of location

0080. Remember - the contents of 0080 was FF and should have Within the microcomputer system some memory locations may not

beentransferred to 0081. be available to the user, either because they are used for special
purposes or simply because memory devices do not exist at these

Symbolically: addresses. As mentioned earlier the 6502 can address 64K of

(0080) — 0081 memory.
where ()indicates contents of

and — transfer to. Our major concern at this point is to see what memory locations

are available to us to store our program. You should observe that

Toinspect the memory contents, press Reset followed by M, key in available memory spaceis:

address 0081, press M again and data field of display should indicate
FF. Transferring contents of a memory does not destroy it.

= 224 bytes for the user
Change contents of 0080 and run again and see if your datais
transferred.

= 512bytes for the user

03FF
0C00

= 1024 bytes for the user
OFFF

001C
= 4 bytes used by the user in conjunction with useful
001F routines etc.

Now is an opportune moment for us to look at the two bytes which
constitute an address.

The Concept of

Paglng In common with most 8-bit microprocessors, EMMA I has an
address capability of 64K (65,536) memory locations. These are
organised into Pages where a page is 256 consecutive memory
locations. With this size of page, there are a possible 256 pages in
64K of memory.

EMMA Il User Manual EMMA Il User Manual

Chapter 4 Instruction Addressing Modes

Schematically we could show these as:

Eachinstruction also has an Addressing Mode. The 6502 can
perform 56 different operations, some of which can be executed in
as many as eight different ways so producing 150 variations.

These addressing modes can be summarised as:

® Implied
Implied addressing uses a single byte instruction which operates
on registers whose address is implied by the particular OP. Code
used. These registers are those internal to the microprocessor
- index registers, status register, stack pointer and external to the
microprocessor (in memory) - the stack and interrupt vector
locations.

o | ® Immediate
00 01 ’ Allinstructions inimmediate addressing mode are two bytes
02 long. The firstis the OP. Code and the second specifies a

03 constant or literal which is to be loaded into an internal register
or external memory location.

Each location could have a two-byte unique address, example: ® Absolute ‘
A a P You have already met this type of addressing mode. Instructions
HIGHBYTE require three bytes of which the second two specify the location
ofthe operand.
where the high byte is the Page Reference Number and the low byte
isthe Locati%n oyr‘u Page s " ® ZeroPage)
Requires two bytes. Zero page is implied in Op. Code and
Hence the address 0020(HEX) is: therefore not specified implicitly. Only the location on zero page
: is required.
HEX) location on th .
00 page and 20(HEX) location on that page ® Relative
i i i i Requires two bytes. Instructions using this addressing mode are
I to th
’F)’aagg:soo andpage 01 haveinstructions which are specialto those of the Branch type. They cause the microprocessor to branch to
) another part of the user program rather than execute the next
Zero Page Zero page may be seen as comprising a set of working registers instruction in sequence. The branchis taken upon the resultofa
upon wlﬂch an\;/ instruction will be executed in a shorter time than if test performed on the condition of flags within the status register.
any other page had been used. Since the time saving in executing a The second byte specifies the extent of the ‘branch' thatis the
single instruction can be as much as 33.33% it is worthwhile amount of program displacement andits direction relative to the
reserving zero page for essential data that needs to be retrieved at address of the Op. Code of the instruction following the branch
high speed. instruction.
The Stack The stack is designated by the microprocessor as page one. Special ® Indexed)))
instructions exist which operate only on the stack and serve to Z::tgitoszc;ts::::gsffev;::;m: '::::;fg:g:eé g;:ie\s(.sThe
transfer and retrieve data ‘pushed’ onto and ‘pulled’ from the stack. specifiedin the address field to modify that address.

None of these instructions specify a particular location on the stack
- the location of the last data item pushed to the stack is
‘remembered’ in aregister termed the Stack Pointer.

EMMA Il User Manual

The method of addressing enables data tables to be sequentially

accessed by performing increment (or decrement) operations on the

index registers.

Indirect

The concept of indirect addressing enables the address field
following an Op. Code to specify an address which in turn
specifies the address of the data required.

® Indexed X, indirect

This mode adds the contents of the index register X to the zero
page address specifiedimmediately following the Op. Code.

Indirect, indexed Y
This mode adds the contents of the index register Y to the data
base address.

EMMA [l User Manual

Prog ram This demands three basic operations to effect the transfer of data.

1.

3.

LOAD data from memory into the accumulator.
(0080)— A

STORE data in accumulator in memory
(A)— 0280

TERMINATE program.

We will now look at each of these steps in turn:

1.

The datais on ZERO PAGE.
00
Page Location

Now ask yourself if a LOAD instruction is available which
operates directly on Zero Page (Consult Instruction Set
- Appendix A)

The Instruction Set should reveal the following:

Addressing Mode - Zero Page
Mnemonic -LDA

Op Code

Number of bytes - 2

We can write the instruction in either:

Symbolic Machine Code:

Operation Operand
(Mnemonic) (Address)
LDA 80

Where 80 is the zero page memory location.

Hexadecimal Machine Code:

Op Code Operand
(Hexadecimal) ~ (Address)

AS 80

20

EMMA II User Manual

Chapter 5 Writing a Program

Task

Flow chart

We will now construct a program using more commonly used
instructions and addressing modes, maintaining the principle of:

® Stating the task
® Constructing a flow chart
@® And writing the program.

Move a single byte of data from memory location 0080 to memory
location 0280. Logically:

(0080) — 0280
Note: the brackets mean “contents of".

Input
Data
From 0080

(Finish ’

EMMA Il User Manual

21

2. Now let's look fora STORE instruction.
The Instruction Setwill reveal:
Addressing Mode - Absolute
Mnemonic - STA
Op. Code - 8D
Number of Bytes - 3

We cannot use zero page addressing mode since the data is
stored on page 02.

Again we can write the instruction in two ways.

@ Symbolic Machine Code

Operation Operand
(Mnemonic) (Address High Byte) (Address Low Byte)
STA 02 80

@ Hexadecimal Machine Code -

Operation Operand
(Mnemonic) (Address Low Byte) (Address High Byte)
8D 80 02

Note the way the operand has been written. When writing
addresses itis normal to write HIGH BYTE followed by LOW BYTE.
However, we Enter the Hexadecimal Codes into the machine
(6502) LOW BYTE first. If you follow this practice when using the
Standard Programming Form you are less likely to make mistakes
when entering your program using the hexadecimal keyboard.

3. Now let's look at terminating the Program.

If you scan the Instruction Set you will not find an instruction
which you can use directly for this purpose. The 6502 Instruction
Setdoes not have an instruction such as Stop, Halt orindeed
Finish.

EMMA |l User Manual

First let's consider what would happen if we did not bother, after all
our two instructions will effectively complete the task! Unless we

tell the machine to stop processing when the transfer is complete it
will continue to fetch, sequentially, data from memory. Unfortunately,
this may be either another program or, as is more likely, rubbish (the
memories will always have something in them; they cannot be
‘empty’).

A simple way round the problem is to cause the machine to entera
‘program loop' for which it can escape only by the user pressing the
RESET pushbutton. A JUMP instruction will do this.

The instruction set shows:

Addressing Mode - Absolute
Mnemonic -

Op Code -4C
Number of Bytes -3

We will use this instruction to jump back to itself.

Example:

@ Using symbolic machine code

Operation Operand
(Mnemonic) (Address)
JmP Terminate

Inthe operand field we have used a Label. We can do this using

symbolic notation. The label stands in place of a Program Address.
We cannot enter the program address that we wish to jump back to
because we have not yet allocated memory space for our program.

22
EMMA Il User Manual
Example Program Assuming you have fully p thep letstrya
more complex program.
Task The following is an example of performing a data block move.
Flow diagram
GetData
Item
Store
Dataltem
Is There

More Data?

Example: Move data from data block addresses 0020-0024 to
addresses 02F0-02F4.

24

EMMA Il User Manual

Itis worthwhile mentioning here that the programmer invents his own
labels for programming convenience. However, a simple guide to
labelling is DO NOT use labels that look like or contain Op Code
Mnemonics. We can now collate our instructions and enter them on
aprogramming sheet.

Hexadecimal Symbolic Assembiler Instructions

ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS

0200 A5 80 LDA 80
0202 8D 80 02 STA 0280
0205 4C 05 02 Term JMP Term

You will notice that we have assigned memory addresses to our
program. This has also enabled us to assign a program address to
the label TERM.

Enter the program in EMMA Il and execute. Do not forget to enter
appropriate data in memory locations 0080 and 0280. If you have any
doubts regarding program entry procedure, go back and study the
section on program loading on page 12.

After running your program examine the location 0280 to see if your
data from 0080 has been stored in that location.

If your program has not functioned as expected go back and check
that the program is correctly entered.

23

EMMA Il User Manual

Main Program

Hexadecimal Symbolic Assembler Instructions

ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS

0200 A2 05 LDX# 05 Setupdata
pointer

0202 CA DEX Setupdataitem

0203 B5 20 : LDA 20X Transfer data

0205 9D FO 02 STA 02F0,X

0208 DO F8 BNE * Getnextvalid
dataitem

020A 4C O0A 02 JMP FINISH

Datato be moved:

0020 00
0021 01
0022 02
0023 03 Datatobetransferred
0024 04

Locations for data to be shifted to:

02F0
02F1
02F2
02F3 Memory space reserved for data
02F4

By studying the program you will see that it contains the following
address modes:

® “LDX#05" Thisisanimmediate instructiontoload ‘X' register
with 05. This has the effect of setting up the data
pointerin this program.

@® “DEX" Animpliedinstructionto decrementthe contents of the
‘X' register.

25

EMMA Il User Manual

Terminating a
Programwitha
Reset

® “LDA20,X" AZERO PAGE instruction;toload accumulator
with the contents of address 0020+ X', where
‘X’is 4. Hence the instruction loads accumulator
with data from 0024.

@® “STA02F0,X" Anabsolute instruction to store accumulator at
address 02F0+X, which is 02F4. Hence data
from 0024 is stored at 02F4.

@® “BNE" Afterthe decrementinstructionthe BNE instruction is
asking to branchiif X is not equal to zero. At this pointin
the program X is now 4 and not equal to zero and the
branchis taken back to address 0202. The data F8in
the Hexadecimal region of the program is a negative
number giving the backward displacement of the
branch.

® “JMP“ Thisisthe nextinstruction after X reaches zero. The
JMP instructionis the same as in the previous program
and jumps back on itself and terminates the program.

Load the program; Load information to be transferred, and run the
program from 0200.

Inspect reserved space after the program has been run to see if the
data has been transferred.

Ifthe program does not operate correctly, check to see if
your program has been entered correctly.

Abetter way of terminating the above programis to jump to the
monitor of the machine to effect a reset condition. The location of the
reset condition in the monitor program is FEEO.

After the program has run a row of dots will appear on the display
showing thatthe program has run and reset.

To terminate the program change the JMP instruction from
4C 0A 02 in the hexadecimal region to 4C EO FE.

26

EMMA il User Manual

Status Register ‘P’

The Status register comprises a number of flags some of which are
setor reset by the result of operations involving the arithmetic unit.
The testing of these flags is an important part of any programming
task. Below is a brief description of each flag.

The programmer has control over some of these flags, he can setor

resetthem as required by the logic of his program.
The Status flags are:

[E - setif the most recent operation performed in the arithmetic
unitgave a negative result.

- this flag indicates when the 7-bit result of a signed
number arithmetic operation overflows.

-this is a break command flag. Itis set by the
microprocessor when an interrupt s caused by a break
command.

@ -when this flag is set any arithmetic operations will be

performed in binary coded decimal. With this flag cleared the

arithmetic unit operates in true binary.

[-istheinterrupt disable flag. When this flagis set the IRQ
input will notinterrupt the microprocessor.

- setif the operation in the arithmetic unit gave a zero result.

-isacarry inputto the arithmetic unit. If set, it will apply a ‘1’
to the least significant bit of an arithmetic operation.

28

EMMA Il User Manual

A Program ming To be competent at programming with EMMA Il the user must be
Model aware of the internal architecture of the 6502 microprocessor. To
help with this, a programming model can be used.
This modelis a diagram of all the internal registers of the
microprocessor.
vss(1 4[] res
o] 2 39[] 020001 By Bo
wa (4 7] #oin}
nells 3sfInc 7 0
s s ne Index Register Y
swel]? s fJaw
vee (] s 33[)oo 7 o
wlls 2flor II] Index Register X
mlf 6502 »[oz
alln 30{]0s . 7 °
a3]z 2[]os I PCH] PCL Program Counter
acQn 2[)os
as Qe of)os 7 °
e B B °
an v 2f e
2 O 2aflan N|v| I8|D|1|Zfc Processor Status Register ‘P’
a0 s 2 an L comy
an 2o 21 [] vss Zero
L——— Interrupt Disable
Decimal Mode
Break Command
Forthcoming Feature
Overflow
Negative
27

EMMA Il User Manual

Chapter 6 Use of Input/Output Ports

The next stage in using the EMMA Il is to utilise its facilities such as
the /O ports.

The I/O ports are contained in chip 6522 on the EMMA |l board which
isreferredto as a Versatile Interface Adaptor (VIA). As its name
implies, itis versatile in as far as it is capable of numerous functions.
Itis also aninterface because it provides a means of connecting
EMMA li to the outside world. The 6522 is physically connected
between the 6502 (microprocessor chip) and external devices such
as applications hardware modules.

The component parts of the I/0 port which we will initially consider
are two ports designated Port A and Port B. Schematically the
appropriate architecture is:

vss 1 wf] o
oo (] 2) caz
par (] aso
eaz 7] ast
(s a8[) msz
pac (s as{] Rs3
s 7 4[] AEs
pas (s 3100
par (o 2] o1
v8o (10 6522 nfoz
eor [2fos
ez (12 2[Jos
ee [1 2 flos
i 27[Joe
vos []1s #%f)or
pes []16 5[] 42
re7 (17 uf)est
cs1 (s afjee
cez [2[) miw
vee [{z0 2 [) iwa
29

Data
Bus & > DRA —8>Porta

DDRA

Address

Address
Decode

Bus

DDRB

A

DRB PortB

EMMA Il User Manual

PortInitialisation

The VIA is far more comprehensive than depicted opposite but we
will consider this subsequently.

The data registers hold the data which is being transferred from the
microprocessor to some outside peripheral device or from some
outside peripheral device to the microprocessor, thatis to say they
are bidirectional. Needless to say data cannot pass through themin
both directions simultaneously. They have to be set to operate inthe
required direction. An important feature of this particular VIA is
that each of the eight bits of both ports can be directionally set
independantly. It is the function of the data direction registers to
accomplish this.

The setting up of the ports is termed initialisation and must be done
by the programmer before the portis used.

The data direction registers are both eight bit registers with each bit
being associated with a corresponding bit in the data register. For
example, if bit 6 of data direction register Port Bis set to logical one,
then bit 6 of data register Port B will be set to ‘output’ while logical
zerowill setitto ‘input’.

The diagram below indicates:

Setto
Logical ‘1°

Peripheral

i

Setto Data
Logica'®’ Flow

/L

Peripheral Device

Microprocessor

Microprocessor

30

EMMA 1l User Manual

Using the Data
Registers

Using the /0 Port
with I/0 Monitor

Once the ports have been initialised the data registers can be used.
We will consider the Data Registers as being ‘transparent’, that s,
any data appearing at the register in the correct direction (as
determined by the DDR) will pass through it. I/O Ports are covered in
more detail in the EMMA Il Technical Manual.

The control of any system configuration is the responsibility of the
microprocessor and its program. The data registers therefore appear
to the microprocessor as memory locations, data can be ‘stored’ to
them or ‘loaded’ from them.

@ Consider the program to transfer data to the I/O port

® Take a standard programming form and assemble a program
which transfers data from memory 0020 to Port A

@ Connectthe I/0 port monitor to Port A, and set the I/O monitor
to READ.

Connection Diagram:
Read
oo PAO
’ ;
|]
| |
! |
|
|
170 Monitor : H EMMA Il
! i
i ;
o7 PA7
Note:

Means ‘connect’ ALL ports DO, D1,
D2 etc, up to and including D7

©

32

EMMA Il User Manual

31

The blocks in the diagram are fully addressable and are identifiable
asbelow:

Label Designation Address
DRB Port B, Data Register 0900
DRA PortA, Data Register 0901
DDRB Port B, Data Direction Register 0902
DDRA Port A, Data Direction Register 0903

Each of these registers can be separately addressed and
simply appear to the microprocessor as a memory location.

We will now write a program which will initialise Port B so that bits
BO0-B3 are configured as input and bits B4-B7 as output.

Set bits 0-3
of PB.DDR
To Logical ‘0

A
Set Bits 4-7
of PB.DDR

To Logical ‘1’|

We can perform our setting of the data direction register simply by
loading the DDRB with FO and using the instructions:

LDA#FO
STADDRB

where:

FsetsbitsB4-B7to 1's
Oclears bits BO-B31t00's

Simply DDRB s the label for the address of Port B - Data Direction
Register. In hexadecimal notation this is 0900.

EMMA Il User Manual

33

Flow chart for this procedure is:

Initialise Port

|

Load Acc’ with
(0020)

|

Store Acc’ at
Port‘A’

{ Stop)

The program listing is:

Hexadecimal Symbolic Assembler Instructions

ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS

0200 A9 FF LDA# FF Load accumulator
with FF

0202 8D 03 09 STA 0903 Stores accat DDRA

0205 A5 20 LDA 20 Load acc with
contents of 0020

0207 8D 01 09 STA 0901 StoresaccatDRA

020A 4C 0A 02 JMP 020A I

Load your program into EMMA II. Also load memory 0020 with AA.

RUN program and observe results.

EMMA Il User Manual

& Exercise

Write a program which READS data from a peripheral device and
stores in memory 0020. Keep connection of /O port monitor to
Port A and switch its mode selector switch to WRITE.

34

EMMA Il User Manual

Polling

Non Maskable
Interrupt (NMI)

This is a technique whereby all devices connected to the iRQline are
‘polled’ or interrogated to determine whether they are asking for
service. Since two or more devices may be requesting aninterrupt,
the polling may be performed to some order of priority.

Once aninterrupt service routine is being executeditis possible for
the programmer to allow a further interrupt to take place since the
interrupt disable flag is under his control. In this way a number of
interrupts may be in a state of being serviced at any one time.

Atthe end of an interrupt service routine the instruction, Return From
Interrupt (RTI1) must be used.

Afurther point to note is that if any other registers such as the
accumulator, X or Y hold data, at the instant of interrupt, which needs
to be remembered, these must be pushed to the stack at the start of
the routine and pulled from the stack prior to RTL.

One last point-it is important that before executing the RTI, the
Device Interrupt Flag which pulled the IRQ low is set since RT! will
have the effect of clearing the Interrupt Disable Flag when the status
registeris restored; eg., the flag must have been clear to allow the
interruptin the first place. If this action is not taken then a series of
interrupts will be attempted although the device has, in fact, been
serviced!

OEFC Low byte
NMI Vectors
OEFD Highbyte

This is an edge sensitive input to the 6502. When alogical ‘1" to
logical ‘0’ transition takes place atthe NMi pin, the

microprocessor will complete its current operation and setan
internal flag such that no matter what state the interrupt disable flag is
in, the microprocessor performs the interrupt sequence outlined
under IRQ. The only exception is that the memory vectors are taken
from @EFC and 0EFD.

TheEM!, through the way it has been implemented, has priority over
the IRQatalltimes.

Itis possible to connect more than one device to the NMI, butifa
subsequent interrupt occurs while servicing the first, it willbe
ignored. Further, it will not be serviced when the initial service routine
is completed. The implications are that multiple interrupt lines
connected to the NMI require careful servicing.

36

EMMA [l User Manual

Chapter 7 Interrupts

Interrupts

Interrupt Request
(IRQ)

35

Aninterrupt allows the program currently being run on the
microprocessor to be interrupted (it's execution temporarily
suspended), so that a more important task can be attended to.

There are four possible conditions which may interrupt the
microprocessor; these are considered in turn.

IRQ Vectors 0EFE Low byte
QEFE High byte

This is a level sensitive input to the 6502. When alogical ‘0’ is
sensed at the TRQ pin (the bar means enabled low), the processor
will complete its current operation. It will then ‘read’ the Interrupt
Disable Flag (flag | in status register) and, if clear, willimplementan
interrupt sequence of operations.

Store Program Counter high byte (PCH) on the stack

Store Program Counter low byte (PCL) on the stack

Store status register contents on the stack

Load PCL from address 0EFE

Load PCH from address OEFF

Set Interrupt Disable Flag (flag | in status register).

Program execution now continues from the memory VECTOR
held at QEFE and OEFF

Ifthe Interrupt Disable Flag is set whenthe iRQline goes low, the
interrupt will be ignored.

OEFE Low byte
IRQ Vectors
OEFF High byte

Ifonly one device were connected to the IRQ line it would be
serviced by whatis known at an ‘interrupt service routine’. This
routine would effectively be the final sequence of instructions
above, namely program execution now continues from the memory
VECTOR held at 0EFF and 0EFE. However, itis more likely thata
number of devices would be connected to the same iRQ line, each
capable of bringing it low. A software routine would then have to
determine which device had caused the interrupt before it could
execute an appropriate set of instructions to service that particular
ge\llli.ceA Various methods are available not least of which is termed
olling.

EMMA [l User Manual

Break Command
(BRK)

RESET (RES)

Programming
Interrupt Service
Routines

Task

37

The break command is a software interrupt. Itis primarily used to
cause the microprocessor to go to a halt condition during program
debugging but can equally be used in other useful ways.

The break command sequence is similar to the hardware interrupt
IRQ except that it cannot be masked by the interrupt disable flag.
Also when the break command is ‘fetched’ the Break Command Flag
(flag B in status register) is set, this enables the programmer to
check whether the interrupt was caused by the software BRK or the
hardware IRQ. Both use the same memory vectors OEFE and OEFF.

This is an edge sensitive input to the 6502 when a logical ‘0" to logical
‘1" transition takes place at the RES pin, the microprocessor will
begin a ‘reset’ sequence.

Itis used to reset or start the microprocessor from a power-down
condition. With RES held low, read/write operations are inhibited. In
the case of EMMA Il, RES is held high via a 4.7kQ2 resistor; itis pulled
low when the reset pushbutton is depressed. Depression of the reset
pushbutton and then its release will start the reset sequence. Aftera
system initialisation period of six clock cycles, the interrupt disable
flag will be set and the microprocessor will load the program counter
with the reset vectors FEEO.

We will now design a program which will demonstrate the use of
interrupt service routines.

Our program will repeatedly increment the VIA User Port Aand the
number of times a full count s achieved will be indicated at VIA User
Port B. The program will include a time waste sub-routine so that
Port A can be easily observed on the /O Port Monitor.

The programisin four parts:

@® Main Program

® Interrupt Service Routine

@ Time Waste Sub-Routine

@ |Interrupt Vector Loading

We will look at each part separately.

The first function is to draw up a flow chart of the task.

EMMA |l User Manual

Main program

Flow chart
Initialise
Ports
AandB
SetPorts
to
Zero
Interrupt Service Routine
v Interrupt
Time
Waste
A
Count No of
TimesPA has
Y reached full
count
Increase
By 1Count
onPortA
Return
Hexadecimal Symbolic Assembler Instructions
ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS
0200 A9 FF LDA# FF Initialise ports
0202 8D 02 09 STA DDRB AandBto
0205 8D 03 09 STA DDRA output
0208 A9 00 LDA# 00 SetDRA
020A 8D 00 09 STA DRB and DRBto zero
0200 8D 01 09 STA DRA
0210 EE 01 09 NEXT INC DRA
0213 20 80 02 JSR 0280 Time waste
subroutine
0216 4C 10 02 JMP NEXT Continue count

38

EMMA Il User Manual

Interrupt Vector
Loadings

The interrupt vectors (start address of the interrupt service routines)
are located at:

0EFC Lowbyte NMIVector
QEFD high byte
QEFE low byte iRQ Vector
QEFF high byte

These locations must be loaded with the start address (interrupt
vectors) of its interrupt service routine (0250). Hence:

Hexadecimal Symbolic Assembler Instructions

ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS

0EFC 50 NMi Vectors
@EFD 02
0EFE 50 IRQ Vectors
QEFF 02

Also enter the interrupt service routine as can be seen above.

We now require a connection diagram.

110 Port Monitor

H

_—
@—@’>< -

40

EMMA Il User Manual

Interrupt Service
Routine

39

Enter the main program starting at 0200. Examination of the main
program is shown below:

Initialisation of Ports ‘A’ and ‘B’ is done by setting the data direction
registers (DDRA) to FF, giving all 1's; hence output conditions exists.
Setting of the ports to zero is done by loading (DRA) direction
registers to ‘00". Thenincrementing of port ‘A’ begins at 0210. Atime
waste routine is needed to give the LED displays time toilluminate
andtime for you to see the count. As can be seen the instruction at
0213is to jump to subroutine at 0280. The time waste routine needs
to be entered as shown below:

Hexadecimal Symbolic Assembler Instructions

ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS

0280 A9 FF LDA# FF
0282 8D 20 00 STA 0020
0285 A9 FF LOOP2 LDA# FF
0287 8D 21 00 STA 0021
028A CE 21 00 LOOP1DEC 0021
028D DO FB BNE LOOP1
028F CE 20 00 DEC 0020
0292 DO F1 BNE LOOP2
0294 60 RTS

Time Waste Sub-Routine

Examination of this program shows that it consists of two loops
counting down from FF in each case.

Hexadecimal Symbolic Assembler Instructions

ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS

0250 EE 00 09 INC DRB Increase by 1 count
atPortB

0253 40 RTI Continue counting at|
PortA

EMMA Il User Manual

Main program

41

The arrangement s such that Port A will provide a binary countup to
15 (Denary) which will be indicated on the LED s of the /0 Port
Monitor. D5 will also indicate the status of the Interrupt Line and

D6 and D7 will indicate the number of interrupts. This connection will
firstly be taken to the NMI and secondly to the IRQ.

@ Runthe main program from 0200 and observe the I/O Port
Monitor.

We have already stated that the NMi interrupt is enabled low and on
the negative edge (transition from high to low). You should observe
this at the instant when Port B is incremented immediately following
the reset of Port Ato zero from a full count of 15 (denary).

® Now consider the Interrupt Request IRQ. This signal differs from
the NMi in that the NMl is negative edge enabled while the IRQis
level (low) enabled. We will keep to the same basic program
except that some modifications will be necessary due to the
difference in the interrupt enabling signals. We will present the
programs and then discuss the modifications.

Hexadecimal Symbolic Assembler Instructions

ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS

0200 A9 FF LDA# FF Initialise Ports
0202 8D 02 09 STA DDRB AandBto
0205 8D 03 09 STA DDRA output

0208 A9 00 LDA# 00 Resets PortB
020A 8D 00 09 STA DRB tozero

0200 A9 10 LDA# 10 Sets Port A
020F 8D 01 09 STA DRA bit4to ‘high'
0212 58

0213 EE 01 09 NEXT INC DRA

0216 20 80 02 JSR 0280 Timewaste SR
0219 4C 13 02 JMP NEXT

EMMA Il User Manual

Exercise

Interrupt Service Routine:
Hexadecimal Symbolic Assembler Instructions
ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS
0250 A9 10 LDA# 10 Resets
0252 0D 01 09 ORA DRA PortA
0255 8D 01 09 STA DRA bit4
0258 EE 00 09 INC DRB
0258 40 RTI

The Time Waste Sub-Routine and the Interrupt Vectors remain
unchanged.

@® The program will require that the iRQ signal is obtained from
PortA, bit 4 rather than bit 3 as in previous exercise.
Now let's consider the modifications to the program.

@ I PortAis set originally to zero, aninterrupt will be enabled
immediately the Interrupt Flag in the microprocessor Status
Register is cleared. Obviously this must be disallowed since we
have not yet started counting! Bit 4 (connected to interrupt IRQ)
is thus set high by storing 10to DRA.

@ When PortAisincremented it will now start counting at 10 (Hex)
rather than 00 (Hex). When F (HEX) is reached (this will
represent a denary count of 15 on Bits 0-3 at Port A) a further
increment should cause aninterrupt (to increment Port B) and
reset Bits 0 - 3 at Port A to zero. The actual output at Port A will go
from 1F to 20, so causing the required interrupt (bit 4 goes low).

@ Before leaving the interrupt routine we must set Bit 4 high
otherwise upon return we willimmediately break to interrupt and
continue to do so without further counts at Port A taking place.
The setting of bit 4 has been done by loading the accumulator
with 10, performing a logical OR on the accumulator with the
actual output of Port A, and storing the result back to Port A.

Change the interconnections between the I/O Port Monitor and
EMMA I1, enter the new program (not forgetting the Time Waste and
Interrupt Vectors if the machine has been switched off) and run the
program.

You should observe that the effect is exactly the same as before.

42

EMMA |l User Manual

Simplified
Architecture 6522
Interval Timers

Address dd
Bus Decode

Each of the blocks in the diagram are fully addressable and are
identifiable as shown below:

Label Designation Address
TiC-L Timer 1 low-order latch (WRITE) 0904
Timer 1 low-order counter (READ)
T1C-H Timer 1 high-order counter (WRITE) 0905
TiLL Timer 1 low-order latch (WRITE) 0906
TiL-H Timer 1 high-order latch (WRITE) 0907
T2C-L Timer 2 low-order latch (WRITE) 0908
Timer 2 low-order counter (READ)
T2C-H Timer 2 high-order counter (WRITE) 0909
ACR Auxiliary Control Register 0908
IFR Interrupt Flag Register 090D
IER Interrupt Enable Register 090E
PCR Peripheral Control Register 090C

44

EMMA Il User Manual

Chapter 8 Hardware Timers (VIA)

43

Inthe previous programs we used a time waste sub-routine as
shown below:

Hexadecimal Symbolic Assembler Instructions
ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS
0260 A9 FF LDA# FF
0262 8D FE STA 0OFE
0265 A9 FF LOOP2 LDA# FF
0267 8D FF 00 STA 0OFF Time Waste
026A CE FF 00 LOOP1DEC O0OFF subroutine
026D DO FB BNE LOOP1
026F CE FE 00 DEC 00FE
0272 DO F1 BNE LOOP2
0274 60 RTS

This is not a particularly efficient way to use the microprocessor
since during a software generated time waste the processor is
unable to perform any other work. In control systems many such
time wastes are required and hence the processor could be very
inefficiently used. A better solution to this time waste/efficiency
problem is to use hardware timers. These can be triggered off by the
microprocessor and configured to interrupt the processor upon time
out. Meanwhile the microprocessor can be performing other

useful functions.

The Versatile Interface Adaptor (6522) has two timers which can be
programmed to count out predetermined periods. They can be
programmed to interrupt the microprocessor upon count out or the
microprocessor can be programmed to read the timer at intervals
and take appropriate action when the timer has timed out.

EMMA |l User Manual

Auxiliary Control
Register (ACR)

Interrupt Flag
Register (IFR)

45

You should observe that there is a slight difference between the two
timers.

We will now look at each of the registers, considering timer 1 only.

Two bits 6 and 7 of the Auxiliary Control Register determine the four
operating modes of Timer 1. Each mode will affect both the Interrupt
Flag Register (bit 6 in particular) and bit 7 of output Port B. The four
modes are outlined in the table below and are selected when the
appropriate code is written into bits 6 and 7 of ACR.

Mode | ACR | BitNo | Operation PortB
7 6 Bit7

0 0 | One-shotMode. A
1 single interruptoccurs | DISABLED
upontime-out of
timer 1

0 1 Free Run Mode. Upon
time-out the counter is
2 automatically reloaded
and anew time-out
period begins. An
interrupt occurs upon

DISABLED

eachtime-out.
1 0 As for Mode 1 Goes low for duration
3 oftimed period.
4 1 1 As for Mode 2 Outputinverted upon
eachtime-out
producing a square

wave of equal mark/
space ratio. Unless
counter is re-loaded
from latches creating
anewtime period.

Bit 6 of the Interrupt Flag Register is set upon time-out of Timer 1.
This bitis cleared by either reading Timer 1, low-order counter
(T1C-L), by writing Timer 1, high-order counter (T1C-H) or by writing
a1’ directly to the flag.

EMMA Il User Manual

Interrupt Enable
Register (IER)

Latches/Counters

Bit 6 of the Interrupt Enable Register corresponds to bit 6 of the
Interrupt Flag Register. A ‘1" in this bit will enable the interrupt while
a ‘0’ will disable. However, bits in this register are under program
control as follows:

Withbit7 at ‘0, a ‘1" in bit 6 will CLEAR interrupt enable, while a
‘0’ will leave it unaffected.

Withbit7 at*1’, a ‘1" inbit 6 will SET interrupt enable, while a ‘0" will
leave it unaffected.

Note: bothIFR and IER are 8-bit registers and provide flags for
other modes of operation of the VIA as well as for Timer 1.

Two 8-bit latches designated low-order and high-order respectively
are provided for Timer 1. Associated with these are two 8-bit
counters, also designated low-order and high-order respectively.
The latches are used to store data which is to be loaded into the
counter. After loading, the counter is decremented at phase 2 (02)
clock rate (1 micro second). Upon reaching zero, aninterrupt flag (bit
60f IFR)is setand the IRQ line will go low if the interrupt is enabled
(bit 6 of IER setto ‘1°). Further interrupts will be disabled by the timer
unless programmed to automatically transfer the contents of the
latches into the counter and begin to decrement again.

46

EMMA Il User Manual

Main Program

Interrupt Service
Routine

The main program is designed to initialise the microprocessor
interrupt flags, the VIA interrupt flags, the VIA mode of operation and
finally to set Timer 1 time interval.

The programis:

Hexadecimal Symbolic Assembler Instructions

ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS

0200 58 cu Enables Processor
iRQ _

0201 A9 CO LDA# CO Enables VIAIRQ

0203 8D OE 09 STA IER

0206 A9 LDA -~ Sets mode of timer 1

0208 8D 0B 09 STA ACR operation

0208 A9 FF LDA# FF Sets

0200 8D 04 09 STA TIC-L Timer 1

0210 A9 FF LDA# FF time

0212 8D 05 09 STA TIC-H interval

0215 4C 15 02 WAIT JMP WAIT Program End

* Mode of operation Codes. (Enter C0 for the present).

Code Operation PB7

00 Single Shot Disabled
40 FreeRun Disabled
80 Single Shot Enabled
co Free Run Enabled

The interrupt service routine is designed to initialise Port A bits 0-6 to
output, increment this port to a full count on bits 0-6, reset the VIA
interrupt flag and then return from interrupt.

48

EMMA Il User Manual

Programming
Hardware Timer 1

Task

47

We will write a simple program which, with minor modifications, will
demonstrate each of the modes of operation of the timers.

Flow Chart

Initialise
Ports

or
AandB

t

SetPorts
to

Zero

Interrupt Service Routine

=

Time
Waste

Count No of
Times PA has
i reachedfull
count

Increase
8y1Count
onPortA

L T

Return

The program is effectively in four parts:

@® MainProgram

@ Interrupt Service Routine
@® Time Waste Sub-Routine
@ Interrupt Vector Loadings

EMMA Il User Manual

Time Waste
Sub-Routine

49

The programis:

Hexadecimal Symbolic Assembler Instructions

ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS

0250 A9 FF LDA# FF Initiali e PortA,
0252 8D 03 09 STA DDRA bits 0-7 to output
0255 A9 00 LDA# 00 Sets PortA

0257 8D 01 09 STA DRA tozero

025A EE 01 09 REP INC DRA

025D 20 80 02 JSR 0280 Time waste SR
0260 A9 7F LDA# 7F Tests DRAfor
0262 CD 01 09 CMP DRA full count

0265 DO F3 BNE REP

0267 A9 40 LDA# 40 Clears VIA_
0269 8D 0D 09 STA IFR Timer 11RQflag
026C 40 RTI

The time waste subroutine is simply included to allow the 1/0 Port
Monitor to be used to monitor Port A, bits 0-6. Itis a straight forward
double-loop routine which you will be familiar with.

The programiis:

Hexadecimal Symbolic Assembler Instructions

ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS

0280 A9 FF LDA# FF
0282 85 20 STA 20
0284 A9 FF LOOP2 LDA# FF
0286 85 21 STA 21
0288 C6 21 LOOP1DEC 21
028A DO FC BN LOOP1
028C C6 20 DEC 20
028E DO F4 BNE LOOP2
0290 60 RTS

EMMA Il User Manual

Interrupt Vector

Loadings

The VIA Timer 1 causes an Interrupt request (iRQ) atthe VIAand
hence the microprocessor itself (the VIA TRQ output pin is connected
onthe printed circuit board, to the microprocessor iRQinput pin)
breaks tolocations OEFE and OEFF.

Hence OEFE and OEFF must be loaded with the start address of the
Interrupt Service Routine.

OEFE - Low Byte
OEFF - High Byte

(Inthis instance, the start address, and hence the vectors of the
interrupt service routine are 0250.) These must be loaded before the
programis run.

Now let's enter these four components of our TIMER 1 program. But
first let's decide on our mode of operation, (see *on Main Program).

@® Mode 1 (Code 00)
The program will operate toincrement Port Abits 0-6to asingle
full count only.

@® Mode 2 (Code 40)
The program will operate to increment Port A, bits 0-6 reset
Port A to zero and continue to increment. The microprocessor
will continue this operation repeatedly.

@® Mode 3 (Code 80)
The program will operate as in Mode 1above, but bit 7 of Port B

will also be enabled. PB7 will be pulsed low for the duration ofthe

Timer 1time interval (approx, 0.6 second).
@ Mode 4 (Code CO)
The program will operate as in Mode 2 above butbit 7 of Port B
will also be enabled. PB7 will generate a continuous
square wave.

Load into EMMA I the four components of the program and run the
program for each of the mode of operation codes. Observeresults.

With the Timer 1 program entered and with mode 4 selected, change

the main program such that the microprocessor iRQis disabled
(change location 0200 from CLI, op. code, to SEl, op. code 78).
Observe results. Note that a similar result can be obtained by
disabling the interrupt atthe VIA (load IER with 80)

EMMA |l User Manual

Chapter 9 Program Debugging

Single Step Mode

ON

RESET

L]

SINGLE
STEP

OF

F

If the program does not operate when RUN itis more likely to be your
program than the hardware that is at fault! When this happens, as
surely it will, you will appreciate the care (or lack of) that you took in
firstly constructing your flow chart and secondly providing adequate
comments on your assembly listing. Assuming you have metthese
documentation requirements then you may proceed to use one or
other of the debug features provided by the EMMA Il monitor.

This causes the microprocessor to be interrupted after each
instruction has been executed, enabling the user to inspect various
internal registers. The contents of these registers indicate the result
of the last operation performed by the microprocessor.

To use the single step facility.
@ Switchsingle step switchto ‘'ON’

® PressReset
® Press[R]key

| K| KK | K

® SetSTART address
® Press[R]key. This will cause the firstinstruction to be executed.

The display will now show the contents of the:

ACCUMULATOR, X-REGISTER, Y-REGISTER and the
STATUS REGISTER

Two hexadecimal digits will be devoted to each and displayed
on the EMMA Il keyboard as follows:

X 1K K | X K KX | X

52

50

EMMA [l User Manual

51

Run the program in mode 1 but enter No Operations (op. code EA) at
memory locations 0267-026B inclusive. This will show the
importance of clearing a Device Interrupt Flag before returning from
interrupt. Although Timer 1 is in a single-shot mode, the VIA interrupt
request line IRQ will only be cleared (taken high) if the counters are
reloaded. Since mode 1 does not do this, the Timer 1 interrupt flag
(bit 6in IFR), must be cleared. If this is not done, the microprocessor
will continue to be interrupted upon return from each interrupt
although the timer itself is not producing interrupts.

The Timer 2is slightly different from Timer 1. You will find technical
details of this timer in the EMMA Il Technical Manual.

EMMA |l User Manual

53

@ Press the[R]key.

The display will now show the contents of the Program Counter
and the Stack Pointer. Four hexadecimal digits being devoted
to each. The program counter gives the address of the next
instruction to be executed.

| % KK | X XK | X

N A J

v v
Program Counter Stack Pointer

If you now press @ again the nextinstruction will be executed
and the display will again show the current contents of Acc. X. Y
and STATUS. Pressh againto give PC and SP.

Repeatedly pressing @ will thus step the program through
instruction by instruction, allowing you to inspect eachof the
processor registers after every instruction.

To return to the normal program RUN mode, the single step switch
must be returned to ‘OFF". Press th ey twice and the program
will run normally fromits start address.

As an example of single step function enter the following program:

Hexadecimal Symbolic Assembler Instructions

ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS

0200 A2 05 LDX# 05
0202 A0 06 LDY# 06
0204 A9 07 LDA# 07
0206 4C 00 02 JMP 0200

Setthe machine single step mode as explained earlier, and setthe
start address for 0200. Upon the next press of@you will see the first
instruction has been carried out.

The display will show:

% K [T S [X X ¥]*

EMMA Il User Manual

05 has been loaded into the X register

Press@again:
D[22 XXX | X

Note that the program counter is at 0202.

Press[R]again, and the instruction at address 0202 s carried out.

The display will show this:

o

EIEEIEEEE]

Press |E again the program counter shifts to 0204.

Press@ and the instruction load accumulator is carried out and can
be seen onthe display as:

EEEEEE

|\, W, N, W ——

Acc X Y Status
Press@ again, and the program counter is displayed, shifted to
0206.

Press [E] again; the jump instruction is carried out. Note that the
registers Acc, X, Y still contain the data previously entered.

Press |E and the program counter displays the address 0200
indicating that the jump instruction has been carried out.

Obviously this program is a simple operation to show how datais

manipulated. The single step facility is of great benefit when fault
finding in a program.

54

EMMA Il User Manual

@ PressP. Thedisplay will now show:
PROGRAM COUNTER AND STACK POINTER.

Inthisexample 0204 * * * *

@ PressPtwice.
The break command is removed and the LDA code is restored.

@ PressR.
The program continues to RUN from location 0204.

56

EMMA Il User Manual

Breakpoint Mode

55

The single step mode can be a time consuming process especially if
the programiis large. The following procedure allows the programto
be ‘inspected’ at set points in the program.

Abreakpoint will interrupt the microprocessor, enabling the userto
inspect the state of the internal registers at any point within the
program.

Assume that the user suspects that there are problems occuring
within a particular part of his program, the breakpoint mode can be
used.

0200 A2 05 LDX# 05
0202 A0 06 LDY# 06
0204 A9 07 LDA# 07
0206 4C 00 02 JMP 0200

Using the previous program we wish to insert a break command at
location 0204. Now the break command code is 00 and it s this that
must replace A9 at 0204.

Now:

[] Press[f]key The display willread: P * * * *
® SetP.0204using hexadecimal keys.

@ Press P. The display now shows that 00 (Break command code)
has been loaded into location 0204 .

@ Notethat pressing E} again (twice) restores the data A9 LDA
and pressing E‘ again (twice) re-introduces the break
command.

@ Withdisplay showingP.020400, pres
G.0200where 0200is the start of the program.

® PressG
The program will now RUN to address 0204 and breaktothe
monitor subroutine used for the single step mode. The display
will now show: Acc. X, Y and STATUS.

Inthis example * *0506 * *

EMMA Il User Manual

Chapter 10 Using the Cassette Interface

CASSETTE INTERFACE
R18 R19
R20-C TR21
R22

D R2S E]

cuso D

JR24 C16 \@}7 358
o

—
R28
LEDy 7 lﬁ

57

A cassette interface is provided on the ‘EMMA 1" to allow the use of
anormal commercial cassette recorder for the storage of
programs. Itis recommended that good quality tapes are used and
that the tape head is kept clean with the occasional use of a head
cleaning tape. Short duration tapes will be less likely to stretch with
repeated use and for this reason C120 cassette tapes are not
recommended.

Connection to the recorder is best facilitated by the hi-fi DIN
connector. If the recorder does not have a DIN facility, then
connection can be made via external microphone and ear-phone
jack sockets. The cassette connector onthe 'EMMA II'is a 3-way
pcb plug onthe left of the cassette interface block.

Load GRD Record

? L]

White Spot

EMMA PCB 0.1" Pins
Viewed from top

Qare mustbe taken toinsert the P.C.B. connector correctly i.e. white
side towards the white spot onthe P.C.B.

Pin connections for the lead are:

GRD (Screen)

NC NC
Record Load
(Red) (Blue)

Viewed from rear
Standard 5-pin DIN plug

NC - Not connected

EMMA Il User Manual

Program Save on
Cassette

e Presssavekey([S]
The display asks for 'FROM' address F * * * *

transmission) rate. BAUD -

Pressing the ‘1’ key selects 1200 baud
Pressing the ‘0’ key selects 300 baud

Do not select this until the cassette is running.

e Press RECORD and PLAY on the cassette recorder.

e Select BAUD RATE; aheaderintone is recorded for approx 4
sec (2.4kHz) followed by data. During this time LED 1is
illuminated.)

e Whenthelastaddressis reached LED 1is extinguished and the
last address appears on the display.

® Press STOP onrecorder.

Summary

e Press[S]enterstartaddress

e Press[S]enterlastaddress +1
Press[S]

® Startrecorder

0 select baud rate and initiate data transfer.

e Press[0]or

58

EMMA Il User Manual

Chapter 11 Useful Routines/Subroutines

User Routines

Included in the monitor program of EMMA Il are sub-routines that
perform functions to assist the programmer. This section of the
manual will explain how to use these routines.

L I to Decimal/Decimal to
Routine Start Address = D900
Amode signal ‘H’ will appear indicating that the routine is in
HEX—DEC mode. The ‘H'is asking fora HEX number upto 4
digits to be entered. After a HEX number has been entered
pressing [E] “PROCESS”, will change the state of the display to
decimal and display ‘D’ in the mode character location and the
decimal equivalent of the HEX number on the right of the display.

eg.H F5
D 245

@ Branch Offset Calculator
Routine Start Address = D980
This sub-routine does branch calculations for the programmer.
Example:

Run the program from D980; the mode digit displays 'F' asking
fora“FROM" address to be entered.

e.g. Enter 0045 as “FROM" address by pressing @ ‘Process’
The mode character ‘t’ will appear asking fora “TO" address.
For this example enter 0060.

Press[f_]agam and the mode character will display a ‘0"
meaning thatit is in the offset mode and display a two digit
offset, ‘19" in this example.

If the branch is out of range, the mode character will show ‘E’
meaning ERROR.

In both of these cases pressing @ (Re-Run) will re-run
the program.

i.e. Returnto the “FROM” situation for the next calculation. By
pressing| L |the monitor program runs and a reset situation
exists.

60

EMMA [l User Manual

Program Load from
Cassette

Summary

59

The EMMA Il interface is tolerant of the amplitude of the cassette
output and itis generally acceptable to have the volume and tone
controls set to approximately mid-position.

e RESET the microprocessor
e PRESS[L]The display will show: BAUD

e Findthe program header tone, either with tape counter, or by
listening for the 2.4KHz tone.

e During the header tone selectbaudratei.e.
[{]=1200baud
[0]=300baud

e Asthedataisloaded LED 1isilluminated.

e Whenthe program has loaded the row of dots will reappear on
the display.

e Stopthe recorder and run the program in the normal way.

Note: The baud rate must be the same as the recorded program
when loading.

| “BAUD-" displayed.
e Startrecorder.

or @ to select appropriate baud

e During header tone press
rate.

e Waitfor row of dots on display and then stop the recorder.

NB Itis important when saving a program to label the tape
containing your program for future reference.

- Title

- Start Address

-Baud Rate

- Tape Counter Location
- Checksum

A ‘Checksum' is formed by adding all the data bytes and arriving
atatotal. This figure can be used to check if data has been corrupted
during transmission. Refer to checksum routine page 61.

EMMA Il User Manual

61

@® Relocator
Routine Start Address = D9C9
This program is designed to move blocks of program to new
address locations. To use this program run from “D9C9". The
mode digit means “F" asking for start address of block to be
moved for an example enter 0245 as start address. Pressing
E “PROCESS"” the mode digit will display 't' indicating the need
for an end address 1 of the block to be moved, for this example
enter 0260.

To relocate do NOT overlap the shift block and the new block
location (ie will corrupt if overlapped).

Pressing [E] key again the command will be 'd" asking for a
destination address, for the example enter 0800.

By pressing the ‘E key the program will now transfer data from
0245 - 025F to a new address 0800; and return to the monitor
program (a row of dots will appear onthe display.)

® Checksum Routine
Routine Start Address = DA50
A checksumis done by adding a group of databytes (e.g. a
program) together and forming a total to be used for comparison;
for example after transmission etc a bit could be corrupted hence
the program would have a different checksum. To use this
routine:

Go from DAS0
The mode character displays 'F' asking for the start address of
the block to be checksummed.

Enteraddress.
PressIE!he mode displays ‘N’ asking for the number of bytes.
Enter number of bytes.

Press[P]
The mode character will display ‘C' indicating a checksum and
the checksum appears on the right of the display.

By pressing @the program returns to the monitor and areset
condition.

EMMA |l User Manual

Useful Subroutines

@ Datainsert Routine
Routine Start Address = D805
This routine can be used in a program to ask the user to insert
datato be used as a function of the program. To utilise the
program the ‘Y’ register needs to be setto the number of
characters of the data. The start address of the sub-routine is
D805. For example enter the small program.

0200 A0 05 LDY # 05 Numberofcharacters
0202 20 05 D8 JSR DBOS ‘Insert’subroutine
0205 4C EO FE JMP FEEO Reset

Run the program from 0200.

The display will show G 0200.

Now you can enter data up to 5 HEX characters. The displayed
characters will shift left as this is being loaded. For this example.
enter 01234, By pressing PROCESS key [P]the programis
executed. The data has been converted into a 4 byte code and
stored at 001C - 001F by examination.

From the example the routine uses both the X and the Y
registers, which are restored on exit.

@ Display8
Routine Start Address = D849
This routine transfers data from 001C - 001F to the display buffer
in seven segment form. Zero suppression is also performed.
For example load locations 001C - 001F with the following:

Run from D849 and the displayed data willbe 1234567

62
EMMA Il User Manual
To show how this sub-routine can be used enter the following
program which loads the contents of 0020 to 0027 into
001010 0017 and then displays them.
Hexadecimal Symbolic Assembler Instructions

ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS

0300 A9 80 LDA #80

0302 85 OE STA OE

0304 A2 00 LDX #00

0306 B5 20 * LDA 20X

0308 95 10 STA 10X

030A E8 INX

030B EO 08 CPX #08

030D DO F7 BNE *

030F 20 OC FE JSR FEOC

0312 8D 00 02 STA 0200

0315 4C EO FE JMP FEEO

Then calculate the data to display a message and load this into
locations 0020 to 0027.
The codes required to illuminate each segment are shown below:

Segment Code

(T a 01

b 02

c 04

D d 8

e 10

H Q f 20
g 40

<o O dp 80

Run the program and observe that the message is displayed.

Op!
mol

erate one of the keys and note that control is returned to the
nitor program. Examine location 0200 which will contain the hex

value of the key used to exit the subroutine.

Write 4 Characters

Ro

utine Start Address = FEOO

Displays contents of (0000 + X — 3) (0000 + X — 2) (0000 + X — 1)
and (0000 + X), from leftto right, on the display.

For example: Load 01 into location 002D, 23 into location 002E, 45
into location 002F, 67 into location 0030.

64

EMMA Ii User Manual

63

@ Display
Routine Start Address = D84D
This routine is similarto ‘DISPLAY 8'; the only difference is the
data transferred for display is from 1C - 1E. Digit 1 of the display
is cleared and digit O is loaded from 1B. 1B can be loaded to give
asymbol or letter as a code of information. The datain our
example will display length L at 7500.

001B 38 Sevensegmentcode for ‘L’
001C 00

001D 75 Data(7500)

001E 00

Run from D84D.
The display will read L 7500

@® Multiply By 10
Routine Start Address = D89D
This routine multiplies the 3 byte number in 0A - 0C by
10 10 and stores the resultin HEX back in 0A - 0C. Care
must be taken to ensure that the monitor program does not
corrupt the answer. (i.e. if the monitor uses 0A - 0C)

@ Multiply by 16
Routine Start Address = D8B3
This routine multiplies the 3 byte number in 0A - 0C by 161 and
stores the resultat 0A -0C.

@ Display Memory Contents
Routine Start Address = FEOC
This routine displays seven segment codes stored at:
0010-0017. If the contents of 000E is less than 80 the display is
scanned once and returns from the sub-routine. If the contents of
00OE are greater than 80 the display is continuously scanned
until a key is operated, at which point the accumulator
and location 000D are loaded with the hex value of the key and a
return from subroutine is performed.

EMMA |l User Manual

65

Load the following simple program starting at location 0300:-

0300 A2,30 LOX#
0302 20,00FE JSR FEO0O

Run the program from 0300, i.e. press 'G', 0300, ‘G".

The display will show the contents of locations 002D to 0030
inclusive. This subroutine drops through to subroutine FEOC to
display the information.

Note: The subroutine uses the accumulator, X registerand Y
register, so if information in these registers is needed, then it must be
stored elsewhere before entering the subroutine.

Display Memory Contents
Routine Start Address = FESE

Converts the contents of the indirect address formed from locations
(0000 + X) and (0000 + X + 1) into seven segment codes, and
stores them in locations 0016 and 0017. Jumping to subroutine
FEOC will cause the information to be displayed on the right hand
side ofthe display.

Load the following program starting at 0300:

0300 A2,00 LDX#00

0302 B8A TXA

0303 95,10 * STA 10X clears
0305 E8 INX locations
0306 EO0,08 CPX#08 0010-0017
0308 DO,F9 BNE *

030A A9,80 LDA#80

030C 85,0 STA 0OE

030E A2,20 LDX#20

0310 20,5E,FE JSR FESE

0313 20,0C,FE JSR FEOC

Load 0020 with 30 and 0021 with 00. Load location 30 with AB.

Run the program from 0300; the display will show AB on the two
righthand digits. The subroutine starting at FESE uses the numbers
stored in 0020 and 0021 (X = 20) to form an indirect address (in this
case 0030) and then converts the contents of this location into seven
segment codes and stores them at 0016 and 0017. Jumping to the
subroutine at FEOC displays these characters.

The subroutine uses the accumulator and Y register.

EMMA Il User Manual

Display Accumulator Contents
Routine Start Address = FE60

Converts the contents of the accumulator into seven segment codes
and stores themin locations 0016 and 0017. To display the contents
of these locations, jump to subroutine FEOC on returning from the
subroutine at FE60.

To show how these subroutines can be used, load the following
program:-

EMMA Il User Manual

Inthis program the contents of 0030 are loaded into the accumulator.

On jumping to subroutine FE60, this information is convertedinto
seven segment codes and stored at 0016 and 0017. Jumping to
subroutine FEOC displays this information on the right of the display.

The subroutine uses the accumulator and Y register.

Display 4 Characters
Routine Start Address = FE64

Converts the contents of locations (0000 + X + 1) and (0000 + X)
into seven segment codes and stores them at locations 0011,0012,
0013 and 0014 respectively. Jumping to subroutine FEOC will display
this information on the left hand centre of the display.

To show how this subroutine can be used, load the following
program starting at 0300:

0300 A2,00 LDX#00 0300 A2,00 LDX#00
0302 8A TXA 0302 B8A TXA

0303 95,10 * STA 10X clears 0303 95,10 * STA 10X
0305 E8 INX locations 0305 EB8 INX

0306 E0,08 CPX#08 0010-0017 0306 E0,08 CPX#08
0308 DO,F9 BNE* 0308 DO,F9 BNE*
030A A9,80 LDA#80 030A A9,80 LDA#80
030C 85,0E STA 0OE 030C 85,0E STA OE
030E A530 LDX 0030 030E A2,30 LDX#30
0310 20,60,FE JSR FE60 0310 20,64,FE JSR FE64
0313 20,0C,FE JSR FEOC 0313 20,0C.FE JSR FEOC

Load location 0030 with 23 and 0031 with 01. Run the program and
0123 will be displayed.

The program displays the contents of locations 0030 and 0031 by
first jumping to the subroutine at FE64. This converts the information
into seven segment codes and stores these atlocation 0011, 0012,
0013 and 0014. The program then jumps to the subroutine at FEOC
to display the information.

The subroutine uses the accumulator and Y register.

66 67

EMMA Il User Manual EMMA Il User Manual

Read Hexadecimal Keys
Routine Start Address = FE88

Shifts data entered on the keyboard hexadecimal keys into memory
locations (0000 + X + 1) and (0000 + X), the subroutine then jumps
to the subroutines starting at addresses FE64 and FEOC to display
the information in the second, third, fourth and fifth digit positions
(from the left side of the display). When a command key is pressed
the subroutine is exited with the value of the command key storedin
the accumulator and at address 000D. Also, on exiting the
subroutine, the information which has been entered will be stored in
locations(0000 + X + 1) and (0000 + X); in this case,0031 and 0030.

Load the following program:-

0300 A2,00 LDX#00
8A TXA
95,10 * STA10X
E8 INX
E0,08 CPX#08
DO,F9 BNE*
A2,30 LDA#30
95,00 STA00,X
95,01 STAO01,X
20,88,FE JSRFE88
4C,13,03 " JMP

Run the program from 0300 and enter hexadecimal information via
the keyboard. Notice that the information enters the display. Press a
command key and note that the display goes blank. Press RESET
and then examine memory locations 0030 and 0031; these will
contain the last four digits entered via the keyboard.

The subroutine uses the accumulator and the Y register.

Key values are:
M 10 L 14 0 00 4 04 8 08 C 0OC
G 11 R 15 1 01 5 05 0 09 D 0D
P 12 + 16 2 02 6 06 A OA E OE
S 18 - 17 3 03 7 07 B 0B F OF

68

Output Data Through The Cassette Interface (To Tape)
Routine Start Address = FEB1

This subroutine takes an 8-bit parallel code from the accumulator
and outputs this byte as a serial code through the cassette interface.

The following programiillustrates the use of subroutine FEB1:-

0300 A2,00 LDX#00
0302 BD,00,02 *LDA 0200,X
0305 20,81,FE JSR FEB1
0308 E8

0309 DO,F7 BNE*

0308 4C,EQ,FE JMP FEEO

Press reset before running the program and the program will output
all of page 02 through the cassette interface.

If required, the following program can be runto store AAand 55in
alternate locations on page 02. The program given above canthen
be used to store this data on tape.

0350 A2,00 LDX#00
0352 A9,AA LDA#AA
0354 85,20 STA 20
0356 A5,20 LDA 20
0358 49,FF EOR#FF
035A 85,20 STA 20
035C 9D,00,02 STA 0200,X
035F E8 IN:

0360 DO,F4 BNE F4
0362 4C,EQ,FE JMP FEEO

The subroutine at address FEB1 uses the accumulator and Y
register.

EMMA Il User Manual

Input Data Through the Cassette Interface (from tape)
Routine Start Address = FEDD

Loads a byte from tape into the accumulator. In loading this byte, the
subroutine takes a serial 8-bit code from the cassette interface and
converts it to a parallel code, placing this parallel byte in the
accumulator.

The following program illustrates the use of this subroutine:-

0300 A2,00 LDX#00
0302 20,0D,FE JSR FEDD
0305 9D,00,02 STA 0200,X
0308 E8 INX

0309 DOF7 BNE F7
0308 4C,FEE0 JMP FEEO

This program loads 256 bytes of data from the tape and stores iton
page 02.

I the program given in the TO TAPE routine is run first, then the
FROM TAPE routine can be used to read the data back from the
tape.

The subroutine uses the accumulator and Y register.

70

EMMA Il User Manual

Appendix A 6502 Instruction Set

The following notation applies to this summary:

A Accumulator
XY Index Registers
M Memory
P Processor Status Register
S Stack Pointer
v Change
- No Change
+ Add
A Logical AND
- Subtract
¥V Logical Exclusive Or
1 Transfer from Stack
l Transfer to Stack
— Transferto
- Transfer from
\" Logical OR
PC Program Counter
PCH Program Counter High
PCL Program Counter Low
OPER Operand
Immediate Addressing Mode

72

EMMA Il User Manual

ADC Add memory to accumulator with carry ADC
Operation: A+ M+ C— A, C NZC1!I DV
JARVARYS Y
Addressing Mode Assembly Language | Op Noof Noof
Form Code Bytes Cycles
Immediate ADC # Oper 69 2 2
Zero Page ADC Oper 65 2 3
ZeroPage, X ADC Oper.X 75 2 4
Absolute ADC Oper 6D 3 4
Absolute, X ADC Oper, X 70 3 4
Absolute, Y ADC Oper,Y 79 3 4
(Indirect, X) ADC (Oper,X) 61 2 6
(Indirect), Y ADC (Oper.Y Al 2 5*
* Add 1 if page boundary is crossed.
AND “AND" memory with accumulator AND
Logical AND to the accumulator
Operation: AAM — A NZC1l1 DV
VoV - -
Addressing Mode Assembly Language | Op Noof Noof
Form Code Bytes Cycles
Immediate AND # Oper 29 2 2
Zero Page AND Oper 25 2 3
ZeroPage, X AND Oper, X 35 2 4
Absolute AND Oper 20 3 4
Absolute, X AND Oper, X 30 3 4*
Absolute, Y AND Oper, Y 39 3 4*
(Indirect, X) AND (Oper, X) 21 2 6
(Indirect), Y AND (Oper).Y 31 2 5*
* Add 1 if page boundary is crossed.
ASL ASL Shift Left One Bit (Memory or Accumulator) ASL

Operation: C{7 1615432110l

NZCI1 DV
v v -

‘AddressingMode | Assembly Language | Op Noof Noof
Form Code Bytes Cycles

Accumulator ASLA @A 1 2

Zero Page ASL Oper 26 2 5

Zero Page, X ASL Oper, X 16 2 6

Absolute ASL Oper QE 3 6

Absolute, X ASL Oper. X 1E 3 7

73

EMMA Il User Manual

BCC BCC Branch on Carry Clear

Operation: Branchon C = 0

BCC

N ZC1 DV

AddressingMode | AssemblylLanguage | Op Noof Noof
Form Code Bytes Cycles
Relative BCC Oper 90 2 2*
* Add 1 if branch occurs to same page
* Add 2 if branch occurs to different page
BCS BCS Branch on Carry Set BCS

Operation: Branchon C = 1

N ZCl1 DV

AddressingMode | AssemblyLanguage | Op Noof Noof
Form Code Bytes Cycles
Relative BCS Oper BO 2 2*
* Add 1 if branch occurs to same page
* Add 2 if branch occurs to different page
BEQ BEQ Branch on Result Zero BEQ

Operation: BranchonZ = 1

N ZC1I DV

Operation: Branchon V = 1

N ZC1 DV

AddressingMode | Assembly Language | Op Noof Noof
Form Code Bytes Cycles
Relative BEQ Oper Fo 2 2*
* Add 1 if branch occurs to same page
* Add 2 if branch occurs to different page
BIT BIT Test Bits in Memory with Accumulator BIT
Operation: AAM, M7 — N, M6 =V NZCl1 DV
Bit6and 7 are transferred to the status register. M2V - - - M6
If the result of AA Mis zero then Z = 1, otherwise
AddressingMode | Assembly Language | Op Noof Noof
Form Code Bytes Cycles
ZeroPage BIT Oper 24 2 3
Absolute BIT Oper 2C 3 4
74
EMMA Il User Manual
BVC BVC Branch on Overfiow Clear BVC
Operation: Branchon V = 0 N ZC1I DV
AddressingMode | Assembly Language | Op Noof Noof
Form Code Bytes Cycles
Relative BVC Oper 50 2 2*
* Add 1 if branch occurs to same page
* Add 2 if branch occurs to different page.
BVS BVS Branch on Overflow Set BVS

AddressingMode | Assembly Language | Op Noof Noof
Form Code Bytes Cycles
Relative BVS Oper 70 2 2*
* Add 1 if branch occurs to same page
* Add 2 if branch occurs to different page.
cLe CLC Clear Carry Flag cLc
Operation: @ — C N ZC1I1 DV
- -8 - - -
AddressingMode | AssemblyLanguage | Op Noof Noof
Form Code Bytes. Cycles
Implied CcLc 18 1 2
cLb CLD Clear Decimal Mode CcLD
Operation: @ — D NzZCI DV
- - - -2 -
AddressingMode | Assembly Language | Op Noof Noof
Form Code Bytes Cycles
Implied CLD |23 1 2

76

EMMA Il User Manual

75

* Add 1 if page boundary is crossed.

BMI BMi Branch on result minus BMI
Operation: Branchon N = 1 N ZCI DV
AddressingMode | Assembly Language | Op Noof Noof
Form Code Bytes Cycles
Relative BMt Oper 30 2 2*
* Add 1 if branch occurs to same page
* Add 2 if branch occurs to different page
BNE BNE Branch on result not zero BNE
Operation: BranchonZ = 0 N ZCI D AV
Mod Assembly Language | Op Noof Noof
AddressingMode Form vhens Code Bytes Cycles
Relative BNE Oper D2 2 2
* Add 1 if branch occurs to same page
* Add 2 if branch occurs to different page
BPL BPL Branch on result plus BPL
Operation: Branchon N = @ NZC1D V
Modk Assembly Language | Op Noof Noof
AddressingMode Form v o Code Bytes Cycles
Relative BPL Oper 10 2 2*
* Add 1 if branch occurs to same page
* Add 2 if branch occurs to different page
BRK BRK Force Break BRK
Operation:Forced Interrupt PC +2 | P 1 N Z C |1 \
Addressing Mode Assembly Language | Op Noof Noof
Form Code Bytes Cycles
Implied BRK [%]%) 1 7
* A BRK command cannot be masked by setting I.
EMMA Il User Manual
cul CLIClear Interrupt Disable Bit cu
Operation: @ — | N ZC1I DV
- - - @ - -
AddressingMode | Assembly Language | Op Noof Noof
Form Code Bytes Cycles
Implied o8] 58 1 2
CLv CLV Clear Overflow Flag CLv
Operation: @ — V N ZC1ID é/
Addressing Mode Assembly Language Op Noof Noof
Form Code Bytes Cycles
Implied CLv B8 1 2
CmP CMP Compare Memory and Accumulator CmMP
Operation: A-M NZCIDV
N A
AddressingMode | Assembly Language | Op Noof Noof
Form Code Bytes Cycles
Immediate CMP # Oper (o) 2 2
Zero Page CMP Oper C5 2 3
Zero Page, X CMP Oper.X DS 2 4
Absolute CMP Oper cD 3 4
Absolute, X CMP Oper, X DD 3 4*
Absolute, Y CMP Oper,Y D9 3 4
(indirect. X) CMP (Oper.X) c1 2 6
(Indirect), Y CMP (Oper).Y D1 2 5¢

EMMA Il User Manual
CPX CPX Compare Memory and Index X CPX
Operation: X-M N ZCI DV
Vv v - - -
AddressingMode | Assembly Language | Op Noof Noof
Form Code Bytes Cycles
Immediate CPX #Oper E@ 2 2
Zero Page CPX Oper E4 2 3
Absolute CPX Oper EC 3 4
CPY CPY Compare Memory and index Y CPY
Operation: Y - M N ZC1l1 DV
VvV oV o- -
AddressingMode | Assembly Language | Op Noof Noof
Form Code Bytes Cycles
Immediate CPY #Oper ce 2 2
Zero Page CPY Oper Ca 2 3
Absolute CPY Oper cc 3 4
DEC DEC Decrement Memory by One DEC

Operation: M-1— M N ZC1l1 DV

vV .-
Addressing Mode Assembly Language | Op Noof Noof
Form Code Bytes Cycles
Zero Page DEC Oper cé 2 5
ZeroPage, X DEC Oper, X D6 2 6
Absolute DEC Oper CE 3 6
Absolute, X DEC Oper, X DE 3 7
DEX DEX Decrement Index X by One DEX
Operation: X-1— X N Z C1 DV
VYo - - -
AddressingMode | AssemblyLanguage | Op Noof Noof
Form Code Bytes Cycles
Implied DEX CA 1 2
78
EMMA Il User Manual
INX INX Increment Index X by One INX
Operation: X + 1 = X N ZC1l1 DV
IV
AddressingMode | AssemblyLanguage | Op Noof Noof
Form Code Bytes Cycles
Implied INX 2] 1 2
INY INY Increment index Y by One INY
Operation: Y + 1Y N ZC I DV
VoV - - - -
AddressingMode | Assembly Language | Op Noof Noof
Form Code Bytes Cycles
Implied INY cs 1 2
JMP JMP Jump to New Location JMP

Operation: (PC + 1) — PCL NZC1I DV

(PC +2)— PCH -
AddressingMode | Assembly Language | Op Noof Noof
Form Code Bytes Cycles
Absolute JMP Oper ac 3 3
Indirect JMP (Oper) 6C 3 5
JSR Jump to New Location Saving Return Address JSR
Operation: PC+ 2|, (PC + 1)— PCL NZCIDV
(PC +2)— PCH e e e e
AddressingMode | Assembly Language | Op Noof Noof
Form Code Bytes Cycles
Absolute JSR Oper 20 3 6

80

EMMA !l User Manual

DEY DEY Decrement Index Y by One

Operation: Y-1—Y

DEY

NZCIDV
vy e - -

AddressingMode | Assembly Language | Op Noof Noof
Form Code Bytes Cycles
Implied DEY 88 1 2
EOR “Exclusive-Or” Memory with Accumulator EOR
Operation: A ¥ M—A N ZCl1 DV
v v - - - -
AddressingMode | AssemblyLanguage | Op Noof Noof
Form Code Bytes Cycles
Immediate EOR # Oper 49 2 2
Zero Page EOR Oper 45 2 3
Zero Page, X EOR Oper,X 55 2 4
Absolute EOR Oper 4D 3 4
Absolute, X EOR Oper,X 5D 3 4+
Absolute, Y EOR Oper.Y 59 3 4*
(Indirect, X) EOR (Oper.X) 41 2 6
(Indirect), Y EOR (Oper).Y 51 2 5*
* Add 1 if page boundary is crossed.
INC INC Increment Memory by One INC
Operation: M+ 1— M N ZCl1DV
Vovo- - -
Addressing Mode Assembly Language | Op Noof Noof
Form Code Bytes Cycles
Zero Page INC Oper E6 2 5
Zero Page, X INC Oper, X F6 2 6
Absolute INC Oper EE 3 6
Absolute, X INC Oper. X FE 3 7
79
EMMA Il User Manual
LDA Load Accumulator with Memory LDA
Operation: M — A /N Z cl1 DbV
J - - - -
AddressingMode | AssemblyLanguage | Op Noof Noof
Form Code Bytes Cycles
Immediate LDA # Oper A9 2 2
ZeroPage LDA Oper A5 2 3
Zero Page, X LDA Oper.X BS 2 4
Absolute LDA Oper AD 3 4 .
Absolute, X LDA Oper. X 8D 3 4‘
Absolute, Y LDA Oper.Y B9 3 4
(Indirect, X) LDA (Oper, X} Al 2 G.
(Indirect), Y LDA (Oper.Y B1 2 5
* Add 1if page boundary is crossed.
LDX LDX Load Index X with Memory LDX
Operation: M — X NZC1 DV
v v - - -
AddressingMode | AssemblyLanguage | Op Noof Noof
Form Code Bytes Cycles
Immediate LDX # Oper A2 2 2
Zero Page LDX Oper A6 2 3
ZeroPage, Y LDX Oper,Y B6 2 4
Absolute LDX Oper AE 3 4 .
Absolute, Y LDX Oper, Y BE 3 a4
* Add 1 if page boundary is crossed.
Loy LDY Load Index Y with Memory Loy
Operation: M— Y NZC1I1 DV
AR
idressing Mode Assembly Language | Op Noof Noof
Aodressing Form veene Code Bytes Cycles
Immediate LDY # Oper AQ 2 2
Zero Page LDY Oper A4 2 3
Zero Page, X LDY Oper,X B4 2 4
Absolute LDY Oper AC 3 4 .
Absolute, X LDY Oper,X BC 3 4

* Add 1 if page boundary is crossed.

81

EMMA Il User Manual

LSR LSR Shift Right One Bit (memory or accumulator) LSR
Operation:@ 7][6]5]4[3[2[1]0] »C NZCl1DYV
0 vV - - -
AddressingMode | Assembly Language | Op Noof Noof
orm Code Bytes Cycles
Accumulator LSRA 4A 1 2
Zero Page LSR Oper 46 2 5
Zero Page, X LSR Oper. X 56 2 6
Absolute LSR Oper 4E 3 6
Absolute, X LSR Oper, X 5E 3 7
NOP NOP No Operation NOP
Operation: No Operation (2 cycles) NZ C1DV
Addressing Mode Assembly Language | Op Noof Noof
orm Code Bytes Cycles
Implied NOP EA 1 2
ORA ORA “OR” Memory with Accumulator ORA
Operation: AVM — A NZClIl DV
Voo -
AddressingMode | AssemblyLanguage | Op Noof Noof
m Code Bytes Cycles
Immediate ORA # Oper 29 2 2
Zero Page ORA Oper @5 2 3
ZeroPage, X ORA Oper, X 15 2 4
Absolute ORA Oper 2D 3 4
Absolute, X ORA Oper, X 1D 3 4*
Absolute, Y ORA Oper, Y 19 3 a*
(Indirect, X) ORA (Oper, X) o1 2 6
(Indirect), Y ORA (Oper).Y 1 2 5
PHA PHA Push Accumulator on Stack PHA
Operation: A | N ZCl1 DV
AddressingMode | Assembly Language | Op Noof Noof
Form Code Bytes Cycles
Implied PHA 48 1 3
82
EMMA Il User Manual
ROR ROR Rotate one Bit Right (memory or accumulator) ROR

Operation: /CA NZCl1DV
R
AddressingMode | AssemblyLanguage | Op Noof Noof
Form Code Bytes Cycles
Accumulator RORA 6A 1 2
Zero Page ROR Oper 66 2 5
Zero Page, X ROR Oper. X 76 2 6
Absolute ROR Oper 6E 3 6
Absolute, X ROR Oper, X 7€ 3 7
RTI RTIReturn from Interrupt RTI
Operation: P 1 PC 1 N ZClIl DV
From Stack
AddressingMode | Assembly Language | Op Noof Noof
Form Code Bytes Cycles
Implied RTI 40 1 6
RTS RTS Return from Sub-routine RTS

Operation: PC 1,PC+1—PC

NZC1lI DV

AddressingMode | Assembly Language | Op Noof Noof
Form Code Bytes Cycles
Implied RTS 60 1 6
SBC SBC Memory from A withBorrow SBC
Operation: A-M-C— A N ZC1I DV

Note: C = Borrow vV VvV - - -

Addressing Mode Assembly Language Noof No
Form

Op
Code Bytes Cycles

of

Immediate SBC # Oper E9 2 2
Zero Page SBC Oper ES 2 3
Zero Page, X SBC Oper.X F5 2 4
Absolute SBC Oper ED 3 4
Absolute, X SBC Oper,X FD 3 a*
Absolute, Y SBC Oper, Y F9 3 a*
(Indirect, X) SBC (Oper, X) E1 2 6
(Indirect), Y SBC (Oper),Y F1 2 5

* Add 1if page boundary is crossed.

84

EMMA Il User Manual

PHP PHP Push Processor Status on Stack PHP
Operation: P | N -Z _C I D 'V

Addressing Mode ;F‘«:rs;mmy Language ggde gs‘zls gsg; s
Implied PHP 28 1 3

PLA PLA Pull Accumulator from Stack PLA

Operation: A 1 \5\1 JZ C AI D V
Addressing Mode /Fk:rs;mblv Language ggd . gg‘t;(s g: Cc;é <
Implied PLA 68 1 4

PLP PLP Pull Processor Status from Stack PLP

Operation: P 1 yrorﬁ Sgckl DV
Addressing Mode ?:{s:\mblv Language 8§d . SS‘ ?z’s (l:_);:colé s
Implied PLP 28 1 4

ROL ROL Rotate on'ﬁ| Bit Left (memory or accumulator) ROL
ol
Operation: {7 [6 [5 [4] 3] [T[04C/ N Z C 1DV

N
i Assembly Language | Op Noof Noof

Addressing Mode F:nsf\ viengues Code Bytes Cycles
Accumulator ROLA 2A 1 2
ZeroPage ROL Oper 26 2 5
Zero Page, X ROL Oper. X 36 2 6
Absolute ROL Oper 2E 3 6
Absolute, X ROL Oper, X 3E 3 7

83

EMMA Il User Manual

SEC SEC Set Carry Flag SEC
Operation: 1 —» C N Z 1C I DV
AddressingMode | Assembly Language | Op Noof Noof
orm Code Bytes Cycles
Implied SEC 38 1 2
SED SED Set Decimal Mode SED

Operation: 1 — D N Z C I 1D "

Addressing Mode Assembly Language | Op Noof No of
Form Code Bytes Cycles
Implied SED F8 1 2
SEI SEl Set Interrupt Disable Status SEI
Operation: 1 — | NZClIl DV
P
AddressingMode | Assembly Language | Op Noof Noof
Form Code Bytes Cycles
Implied SEI 78 1 2
STA STA Store Accumulator in Memory STA
Operation: A— M NZCl1DV
Addressing Mode Assembly Language | Op Noof Noof
Form Code Bytes Cycles
Zero Page STA Oper 85 2 3
ZeroPage, X STAOper, X 95 2 4
Absolute STAOper 8D 3 4
Absolute, X STA Oper, X 90 3 5
Absolute, Y STAOper, Y 929 3 5
(Indirect, X) STA(Oper, X) 81 2 6
(Indirect), Y STA (Oper),Y 9 2 6

85

EMMA [l User Manual

STX

Operation: X — M

STX Store Index X in Memory STX

NZC1 DV

AddressingMode | AssemblyLanguage | Op Noof Noof
Form Code Bytes Cycles
ZeroPage STXOper 86 2 3
ZeroPage, Y STXOper, Y 96 2 4
Absolute STX Oper 8E 3 4
STY STY Store Index Y in Memory STY

Operation: Y > M

N ZCl1 DV

AddressingMode | Assembly Language | Op Noof Noof
m Code Bytes Cycles
Zero Page STY Oper 84 2 3
ZeroPage, X STY Oper, X 94 2 4
Absolute STY Oper 8C 3 4
TAX TAX Transfer Accumulator to Index X TAX

Operation: A— X

NZCl1DV
VANV

AddressingMode | Assembly Language | Op Noof Noof
Form Code Bytes Cycles
Implied TAX AA 1 2
TAY TAY Transfer Accumulator to Index Y TAY

Operation: A— Y

NZClDV
Vovo- - - -

AddressingMode | AssemblyLanguage | Op Noof Noof
Form Code Bytes Cycles
Impiied TAY A8 ‘ 1 2
86

EMMA Il User Manual

Summary of Addressing Modes

.]
glelolslsl %% gls|<
S| e|lolooeiele o| == 2
ElB|&|I&|&|2|2|3|3|2(8|8]2
32| ololol8lO|lo|l=|Rl=El5]9
BlE|S|8|8|2|2|28|2|5|2 2|2
<|E|N|N|(R|c|g|2|E|c|E|E|<

ADC 69 |65 |75 6D |7D |79 61 |71

AND 29 [25 |35 2D (3D |39 21 |31

ASL |0A 06 |16 OE [1E

BCC 90

BCS BO

BEQ FO

BIT 24 2C

BMI 30

BNE DO

BPL 10

BRK 00

BVC 50

BVS 70

CLC 18

CcLD D8

cLl 58

CcLV B8

CMP C9|Cs5|D5 CD|DD| D9 C1|D1

CcPX EO | E4 EC

CPY Co|cC4 cc

DEC C6|D6 CE|DE

DEX CA

DEY 88

EOR 49 | 45 |55 4D |5D |59 41 |51

INC E6 | F6 EE|FE

INX E8

INY cs

JMP 4c 6C

88

EMMA |l User Manual

TSX TSX Transfer Stack Pointer to Index X TsX
Operation: S — X N ZCIl DV
Voo e
AddressingMode | AssemblyLanguage | Op Noof Noof
Form Code Bytes Cycles
Implied TSX BA 1 2
TXA TXA Transfer Index X to Accumulator TXA

Operation: X— A

NZCIDYV
AV

‘AddressingMode | Assembly Language | Op Noof No of
m Code Bytes Cycles
Implied TXA 8A 1 2
TXS TXS Transfer Index X to Stack Pointer TXS

Operation: X— S

NZC1l1 DV

AddressingMode | Assembly Language | Op Noof Noof
Form Code Bytes Cycles
Implied TXS 9A 1 2
TYA TYATransfer Index Y to Accumulator TYA

Operation: Y — A

NZCIDV
VAV

AddressingMode | Assemblylanguage [Op Noof Noof
Form Code Bytes Cycles
Implied TYA 98 1 2
87
EMMA |l User Manual
|5

H k-]
Elelols %l %% 2|
S| S| 9o ole|gls o| 2|52
ElS|&ISI&IE|E3|53|3|2|8]|8]|2
3| @ colo|lo|l=|R|E|E]|09
SlE|S|5!5/5|8 8|2(=|2|28|2
< | E|S|R|8|2 ||| E|2|E|E|<

JSR 20

LDA A9 | A5 | B5 AD|BD|B9 A1 |B1

LDX A2 | A6 B6 | AE BE

LDY A0 | A4 | B4 AC|BC

LSR |4A 46 |56 4E |5E

NOP EA

ORA 09 {05 |15 oD[1D |19 01 |11

PHA 48

PHP 08

PLA 68

PLP | 28

ROL |2A 26 |36 2E | 3E

ROR |6A 66 |76 6E | 7E

RTI 40

RTS 60

SBC E9 |E5|F5 ED|FD|F9 E1|F1

SEC 38

SED F8

SEI 78

STA 85 |95 8D 9D |99 81 {91

STX 86 96 | 8E

STY 84 (94 8C

TAX AA

TAY A8

TYA 98

TSX BA

TXA 8A

XS 9A

89

EMMA Il User Manual

Numerical Listing 9@ - BRK 30 BMI
81 - ORA-(Indirect,X) 31 AND - (Indirect,X)
82 - Future Expansion 32 Future Expansion
83 - Future Expansion 33 Future Expansion
84 - Future Expansion 34 Future Expansion
85 - ORA-ZeroPage 35 AND - Zero Page, X
86 - ASL-ZeroPage 36 ROL - Zero Page, X
87 - Future Expansion 37 Future Expansion
@8 - PHP 38 SEC
89 - ORA-Immediate 39 AND - Absolute,Y
@A - ASL-Accumulator 3A Future Expansion
8B - Future Expansion 3B Future Expansion
8C - Future Expansion 3C Future Expansion
8D - ORA-Absolute 3D AND - Absolute,X
@E - ASL-Absolute 3E ROL - Absolute,X
@F - Future Expansion 3F Future Expansion
18 - BPL 40 RTI
11 - ORA-(Indirect),Y 41 EOR - (Indirect,X)
12 - Future Expansion 42 Future Expansion
13 - Future Expansion 43 Future Expansion
14 - Future Expansion a4 Future Expansion
15 - ORA-ZeroPage,X 45 EOR - Zero Page
16 - ASL-ZeroPage,X 46 LSR-Zero Page
17 - Future Expansion 47 Future Expansion
18 - CLC 48 PHA
19 - ORAAbsolute,Y 49 EOR - Immediate
1A - Future Expansion 4A LSR - Accumulator
1B - Future Expansion 48 Future Expansion
1C - Future Expansion 4c JMP - Absolute
1D - ORA-Absolute,X 4D EOR - Absolute
1E - ASL-Absolute,X 4E LSR- Absolute
1F - Future Expansion 4F Future Expansion
20 - JSR 50 BVC
21 - AND-(Indirect,X) 51 - EOR-(Indirect),X
22 - Future Expansion 52 Future Expansion
23 - Future Expansion 53 Future Expansion
24 - BIT-ZeroPage 54 Future Expansion
25 - AND-ZeroPage 55 EOR-Zero Page, X
26 - ROL-ZeroPage 56 LSR-ZeroPage,X
27 - Future Expansion 57 Future Expansion
28 - PLP 58 cu
23 - AND-Immediate 59 EOR-Absolute,Y
2A - ROL-Accumulator 5A Future Expansion
2B - Future Expansion 5B Future Expansion
2C - BIT-Absolute 5C Future Expansion
2D - AND-Absolute 5D EOR - Absolute,X
2E - ROL-Absolute 5E LSR- Absolute,X
2F - Future Expansion 5F Future Expansion
90
EMMA 1l User Manual
C8 - CPY-Immediate F® - BEQ
C1 - CMP-(Indirect,X) F1 - SBC-(Indirect),Y
C2 - Future Expansion F2 - Future Expansion
C3 - Future Expansion F3 - Future Expansion
C4 - CPY-ZeroPage F4 - Future Expansion
C5 - CMP-ZeroPage F5 - SBC-ZeroPage X
C6 - DEC-ZeroPage F6 - INC-ZeroPageX
C7 - Future Expansion F7 - Future Expansion
c8 - INY F8 - SED
C9 - CMP-Immediate F9 - SBC-Absolute,Y
CA - DEX FA - Future Expansion
CB - Future Expansion FB - Future Expansion
CC - CPY-Absolute FC - Future Expansion
CD - CMP-Absolute FD - SBC-Absolute,X
CE - DEC-Absolute FE - INC-Absolute,Y
CF - Future Expansion FF - Future Expansion
De - BNE
D1 - CMP-(Indirect),Y
D2 - Future Expansion
D3 - Future Expansion
D4 - Future Expansion
D5 - CMP-ZeroPageX
D6 - DEC-ZeroPageX
D7 - Future Expansion
D8 - CLD
D9 - CMP-Absolute,Y
DA - Future Expansion
DB - Future Expansion
DC - Future Expansion
DD - CMP-Absolute,X
DE - DEC-Absolute,X
DF - Future Expansion
E@ - CPX-Immediate
E1 - SBC-(Indirect,X)
E2 - Future Expansion
E3 - Future Expansion
E4 - CPX-ZeroPage
E5 - SBC-ZeroPage
E6 - INC-ZeroPage
E7 - Future Expansion
E8 - INX
E9 - SBC-Immediate
EA - NOP
EB - Future Expansion
EC - CPX-Absolute
ED - SBC-Absolute
EE - INC-Absolute
EF - Future Expansion

92

EMMA Il User Manual

91

[
@

o oo
Tmo

RTS 90
ADC - (Indirect,X) 91
Future Expansion 92
Future Expansion 93
Future Expansion 94
ADC - Zero Page 95
ROR - Zero Page 96
Future Expansion 97
PLA 98
ADC -Immediate 99
ROR - Accumulator 9A
Future Expansion 9B
JMP - Indirect [
ADC - Absolute 9D
ROR - Absolute 9E
Future Expansion SF
BVS A0
ADC - (Indirect),Y Al
Future Expansion A2
Future Expansion A3
Future Expansion A4
ADC - Zero Page,X A5
ROR - Zero Page,X A6
Future Expansion A7
SEI A8
ADC - Absolute,Y A9
Future Expansion AA
Future Expansion AB
Future Expansion AC
ADC - Absolute,X AD
ROR-Absolute,X AE
Future Expansion AF
Future Expansion BO
STA-(Indirect,X) B1
Future Expansion B2
Future Expansion B3
STY -Zero Page B4
STA-ZeroPage BS
STX-ZeroPage B6
Future Expansion B7
DEY B8
Future Expansion B9
TXA BA
Future Expansion BB
STY - Absolute BC
STA-Absolute BD
STX-Absolute BE
Future Expansion BF

BCC
STA-(Indirect,Y)
Future Expansion
Future Expansion
STY - Zero Page, X
STA-Zero Page, X
STX-ZeroPage,Y
Future Expansion

TYA
STA-Absolute,Y
TXS

Future Expansion
Future Expansion
STA-Absolute,X
Future Expansion
Future Expansion
LDY - Immediate
LDA - (Indirect,X)
LDX - Immediate
Future Expansion
LDY - Zero Page
LDA - Zero Page
LDX - Zero Page
Future Expansion
TAY

LDA - Immediate
TAX

Future Expansion
LDY - Absolute
LDA - Absolute
LDX - Absolute
Future Expansion
BCS

LDA - (Indirect),Y
Future Expansion
Future Expansion
LDY - Zero Page,X
LDA - Zero Page, X
LDX-Zero Page,Y
Future Expansion
CcLv
LDA-Absolute,Y
TSX

Future Expansion
LDY - Absolute,X
LDA - Absolute,X
LDX-Absolute,Y
EF - Future Expansion

EMMA Il User Manual

Alphabetical List

93

ADC
AND
ASL
BCC
BCS
BEQ
BIT
BMI
BNE
BPL
BRK
BVC
BVS
cLc
CLD
cu
CLv
CcMmP
CcPX
CPY
DEC
DEX
DEY
EOR
INC
INX
INY
JMP
JSR
LDA
LDX
Loy
LSR
NOP
ORA
PHA
PHP

PLP
ROL
ROR

RTS
SBC
SEC
SED
SEI

AAdd Memory to Accumulator with Carry

‘AND' Memory with Accumulator

Shift Left One Bit (Memory to Accumulator)

Branch on Carry Clear
Branch on Carry Set
Branch on Resuit Zero

Test Bits in Memory with Accumulator

Branch on Result Minus
Branch on Result not Zero
Branch on Result Plus
Force Break

Branch on Overflow Clear
Branch on Overflow Set
Clear Carry Flag

Clear Decimal Mode
Clear Interrupt Disable Bit
Clear Overflow Flag

Compare Memory and Accumulator

Compare Memory and Index X
Compare Memory and Index Y
Decrement Memory by One
Decrement Index X by One
Decrement Index Y by One

‘Exclusive Or’ Memory with Accumulator

Increment Memory by One
Increment Index X by One

Increment Index Y by One

Jump to New Location

Jump to New Location Saving Return Address

Load Accumulator with Memory

Load Index X with Memory
Load Index Y with Memory

Shift Right One Bit (Memory or Accumulator)

No Operation

‘OR' Memory with Accumulator

Push Accumulator to Stack

Push Processor Status to Stack

Pull Accumulator from Stack

Pull Processor Status from Stack

Rotate One Bit Left (Memory or Accumulator)
Rotate One Bit Right (Memory or Accumulator)

Return from Interrupt
Return from Subroutine

Subtract Memory from Accumulator with Borrow

Set Carry Flag
Set Decimal Mode
Set Interrupt Disable Status

EMMA Il User Manual

EMMA Il User Manual

STA Store Accumulator in Memory
STX Store Index Xin Memory

STY Storeindex Y in Memory

TAX Transter Accumulator to Index X
TAY Transfer Accumulator to Index Y
TSX Transfer Stack Pointer to Index X
TXA Transfer index X to Accumulator
TXS Transferindex X to Stack Pointer
TYA Transfer Index X to Accumulator

95
94

Instruction Addressing Modes and Related Execution Times (in clock cycles)

Accumulator

Zero Page,Y

Absolute,X

Implied

Relative

(Indirect,Y)

Absolute Indirect

ADC
AND
ASL
BCC
BCS
BEQ
BIT
BMI
BNE
BPL
BRK
BVC
BVS
CcLC
CLD
CLI
CLv
CMP
CPX
CPY
DEC
DEX
DEY
EOR
INC
INX
INY

LIMP

N N immediate

NN

@ @ | 7eroPage

awww

o w

@ & & |7ero Page,X

[0

@ & & | Absolute

[R

o

*

NS
%

4*

* % | Absolute,Y

4

4*

MDD

n N

(22}

%+
oxr

oxx
o
oxx

ox=
o

@ @ | (Indirect,X)

a o,
*

*

5

5

EMMA Il User Manual

EMMA Il User Manual

Instruction Addressing Modes and Related Execution Times (in clock cycles)

Absolute, X
Absolute,Y
Relative
(Indirect,X)
(Indirect,Y)
Absolute Indirect

Accumulator
Implied

Immediate
Zero Page
Zero Page,X
Zero Page,Y
Absolute

JSR
LDA
LDX
LDY
LSR |2
NOP 2
ORA 2
PHA
PHP
PLA
PLP
ROL
ROR |2 5 |6 6 |7
RTI
RTS
SBC 2 (3 |4 4 |4 |4 6 |5
SEC
SED
SEI
STA 3 4
STX 3 4 |4
STY 3 4
TAX
TAY
TSX
TXA
XS
TYA

“*Add one cycle if indexing across page boundary.
**Add one cycle if branch is taken. Add one additional if branching operation crosses page boundary. 97

96

EN

*
(=]
[}

4
4+

N
[SESEN)
) W W ww
o IS FES
N
o I YN NFN-N
~ TR
«h»
oo FNENEERS
o
@

NN

NN NN NN

EMMA Il User Manual

Appendix B Conversion Table Etc

Hexadecimal
Conversion Table

Forward Relative
Branch

Backward Relative
Branch

Example Program
Sheet

98
EMMA Il User Manual
Backward Relative Branch

. 01 2 3 4 5 6 7 8 9 A B CDEF
8 128127 126 125 124 123 122 121 120 119 118 117 116 115 114 113
9 112111 110 109 108 107 106 105 104 103 102 101 100 93 98 97
A 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81
B 80 79 78 77 76 75 74 73 72 71 70 63 68 67 66 65
Cc 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
D 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
E 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17
F| 1615 14 13 12 11 109 8 7 6 5 4 3 2 1

*Backward Relative Branch Value

100

EMMA Il User Manual

99

101

Hexadecimal Conversion Table

012 3 45 6 7 8 9 A B CDEF

> ©® Noos

oo

0 1 2 3 4 5 6 7 8 9 1011 1213 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87 88 8 90 91 92 93 94 95
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
112113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

*Hexadecimal values

Forward Relative Branch

01 2 3 4 5 6 7 8 9 ABCDEF

0 1 2 3 4 5 6 7 8 9 1011 1213 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99 100 101102 103 104 105 106 107 108 109 110 111
112113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

*Forward Relative Branch Values

EMMA Il User Manual

EMMA Program Sheet No:
Programmer: Program Title:
Symbolic Comments
lﬂdr Label| MNEM| Operand W

y.' L.J. Technical Systems

L.J. Technical Systems Ltd.

Francis Way

Bowthorpe Industrial Estate
Norwich, NR5 9JA. England.
Telephone: (0603) 748001
Telex: 975504

Fax: (0603) 746 340

Designed, Typeset and y L

L.J. Technical Systems Inc.

19 Power Drive

Hauppauge

N.Y.11788. USA.

Telephone: 1800237 348

InN.Y.516234 2100

Fax: 516234 2656
icity 1987.

Distributor

y.' L.J. Technical Systems

L.J. Technical Systems Ltd.

Francis Way

Bowthorpe Industrial Estate
Norwich, NR5 9JA. England.
Telephone: (0603) 748001
Telex: 975504

Fax: (0603) 746 340

Designed, Typeset and y L

L.J. Technical Systems Inc.

19 Power Drive

Hauppauge

N.Y.11788. USA.

Telephone: 1800237 348

InN.Y.516234 2100

Fax: 516234 2656
icity 1987.

Distributor

y.' L.J. Technical Systems

L.J. Technical Systems Ltd.

Francis Way

Bowthorpe Industrial Estate
Norwich, NR5 9JA. England.
Telephone: (0603) 748001
Telex: 975504

Fax: (0603) 746 340

Designed, Typeset and y L

L.J. Technical Systems Inc.

19 Power Drive
Hauppauge
N.Y.11788. USA.
Telephone: 1800237 348
InN.Y.516234 2100
Fax: 516 234 2656

icity 1987.

Distributor

y.' L.J. Technical Systems

L.J. Technical Systems Ltd.

Francis Way

Bowthorpe Industrial Estate
Norwich, NR5 9JA. England.
Telephone: (0603) 748001
Telex: 975504

Fax: (0603) 746 340

Designed, Typeset and y L

L.J. Technical Systems Inc.

19 Power Drive
Hauppauge
N.Y.11788. USA.
Telephone: 1800237 348
InN.Y.516234 2100
Fax: 516 234 2656

icity 1987.

Distributor

