
Acolyte Computer
Design Document

By: Steven Chad Burrow

The Acolyte Computer uses a W65C02S microprocessor running at 3.14 MHz. It
contains up to 48KB of RAM and up to 8 banks of ROM, each bank being 16KB.
Supported features include VGA video display, PS/2 keyboard input, square wave audio
output, and SPI interfacing an EEPROM and a Micro SD Card.

Memory Map:
$0000 - $07FF = System RAM
$0800 - $7FFF = Video RAM
$8000 - $87FF = Unused RAM
$8800 - $BFFF = BASIC RAM
$C000 - $FFFF = Banked ROM

Primary Bank:
$C000 - $CFFF = OS and Monitor ROM
$D000 - $DFFF = BASIC ROM
$E000 - $F5FF = Data tables
$F600 - $FFFF = System ROM

The VGA video display has a resolution of 320x240 using 4 colors.

Output is done by writing to ROM, where the data bus is captured by a latch IC.

Input is through /IRQ, /NMI, and /SO lines.

The design goal of this system is to minimize chip count, while maximizing capability
of required chips. It is also designed to be easy to install and understand, while still
providing a full user experience.

Timing:

The overall design of the Acolyte Computer is focused around the video circuit. While
the BE pin on the processor is high, it keeps the address and data buses online and in
normal operation. When the BE pin goes low, the address and data buses are in a high-Z
state from the processor, allowing for the video counters to access the RAM for color
data and the ROM for video sync and reset signals. The BE pin is kept high during the
first quarter of PHI2-low because the processor reads data from the data bus on the
falling edge of PHI2. /LATCH is during the last quarter of PHI2-low, where both the
color data and video sync signals are latched for the rest of the cycle.

Divider:

The divider is a 74HC161 counter. It could be
replaced with a 74HC163 with no changes. This
IC simply divides the CLK signal down so that it
is usable for different timing logic situations.

CLK is running at 25.175 MHz, so thus:
HALF is 12.5875 MHz,
QUARTER is 6.29375 MHz, and
PHI2 is 3.146875 MHz.

All other control signals are tied high so that the
counter is never reset or loaded, but is allowed to
free run from CLK.

Processor:

The W65C02S microprocessor running at 3.14
MHz is at the heart of the Acolyte Computer.

The usual address and data buses are
connected. Other typical signals used are
the /RES reset line, PHI2 clock input, /RW
direction output, and the RDY pulled up.

/PHI2 is not used on this board, but is
connected to the expansion port. KEY-CLK
comes from the PS/2 keyboard and is directly
connected to the /IRQ interrupt. Edge-sensitive
/NMI is KEY-CLK nor KEY-DATA, which
allows for the interrupt to trigger halfway
through the keyboard’s incoming signal. BE is
high for all of PHI2-high, as well as the first
quarter of PHI2-low. SYNC is not used on this
board, but is connected to the expansion
port. /SO is SPI-MISO nor SO-TRIGGER,
which could set the overflow flag shortly after
it is cleared.

RAM:

The RAM used is the AS6C1008-55 SRAM. It
contains 128KB of RAM, yet only 48KB of it is
used on this system. The board allows for the use
of the AS6C4008-55 as well.

The AS6C62256-55 chip is also supported, though
with only 32KB of RAM any programs using the
extra 16KB of RAM will not work. This includes
BASIC. It has been coded to not glitch the system
in the event that the user tries to program in BASIC
while only having 32KB of RAM.

/RAM is enabled when either BE is low or when it
ROM is not being accessed. /OE is low during BE-
low or determined by /RW when PHI2 is high. /OE
on the RAM chip could be permanently grounded
and the system will still work. /WE is never
enabled while BE is low, but is determined by /RW
and qualified to the second half of PHI2-high.

The C data bus is connected to the D data bus through a transceiver IC. While BE is
low, the transceiver disconnects the C and D data buses. At that time, the address bus is
populated by the video counters so that the RAM can push color data onto the shift
registers. While BE is high, the transceiver connects the C and D data buses only when
accessing RAM.

ROM:

The ROM used is the SST39SF010-70
Flash ROM. It contains 128KB of memory,
which technically only allows for 2 banks.
If an SST39SF040-70 is used, it can access
all 8 banks.

The top 48KB of each bank contains the
video circuit’s sync and reset signals. Thus,
only the bottom 16KB of each bank are
usable for code and data.

/ROM is enabled when BE is low or when
A15 and A14 are both high, which would
only happen during PHI2-high. /OE is
enabled when BE is low or when
determined by /RW during PHI2-high.

When BE is low, the address bus is
populated by the video counters, pushing
the ROM data containing sync and reset
signals onto a latch.

Video Latch:

The video latch is a 74HC377. When /LATCH
is enabled during the last quarter of PHI2-low,
CLK triggers the data bus to latched. During
that time, the ROM is pushing video sync and
reset signals onto the data bus.

The H-RESET and V-RESET signals are tied to
the video counters, and the H-SYNC and V-
SYNC signals go to the VGA output. VISIBLE
will reset the color shift registers to ground.
SO-TRIGGER toggles the /SO line when the
SPI-MISO line is low.

Horizontal Counter:

Each video counter is a 74HC590. The horizontal
counter determines the addresses within each video
scan line. When BE is high, the counter’s output is
turned to high-Z, allowing for the processor to take
control of the address bus. When BE is low, the
counters control the address bus.

The counters change each PHI2 cycle. Because the
CPC and CPR pins connected together would cause
a delay by one cycle, CLK was instead used to
quickly put the counter registers on the output pins
when changed by PHI2. H-RESET resets the
counter to zero.

Notice only the lower seven address lines are used here, thus able to access 128 bytes of
memory. Though only 80 bytes of memory are used for color data, and 100 bytes of
memory are used for sync and reset signals. The extra bytes of memory are
overscanned, and can technically be used as variable data in RAM.

Vertical Counters:

Each video counter is a 74HC590. The vertical
counters determine the addresses differentiating the
video scan lines. When BE is high, the counter’s
output is turned to high-Z, allowing for the processor
to take control of the address bus. When BE is low,
the counters control the address bus.

The counters change each /H-RESET cycle, thus
when the horizontal counter is reset the vertical
counters are incremented. Because the CPC and
CPR pins connected together would cause a delay by
one cycle, CLK was instead used to quickly put the
counter registers on the output pins when changed by
PHI2. V-RESET resets the counter to zero.

These counters are connected with the /RCO line,
creating a cascading effect. The second vertical
counter only has A14 and A15, and A15 stays low
most of the time and for all of the visible area.

Transceiver:

The transceiver is a 74HC245 which is bi-directional.
This either connects or disconnects the C and D data
buses. The direction is determined by /RW. /CE is
always disabled while BE is low, and only enabled
while BE is high if RAM is being accessed.

This orientation of the pins was used to help route
traces on the printed circuit board easier.

Output Latch:

The output latch is a 74HC273. This is
essentially a replacement for the commonly
used W65C22S VIA chip. /OUTPUT is low
when writing to ROM, thus A14 and A15 are
high and also PHI2 is high. When PHI2
falls, /OUTPUT rises, thus latching the data
bus. /RES is the reset line used by the 6502
processor as well, grounding all lines.

The first 4 output pins are to control SPI
devices. BANK-X pins are tied directly to the
ROM’s higher address pins. AUDIO-OUT
connects to a 3.5mm jack through a small
audio circuit. Toggling the AUDIO-OUT pin
at certain frequencies creates sound output.

Shift Registers:

Each shift register is a 74HC166. These
shift registers hold color data from the
RAM. /LATCH happens at the same
time as the video latch, during the last
quarter of PHI2-low. A low signal on
VISIBLE will ground the shift registers,
thus all overscanned memory locations
are never visible on the video display.
/CE is permanently grounded, though if
brought high it would disable these shift
registers allowing for other ICs to push
color data.

The C data bus is alternating between
both shift registers. Because the first
shift register controls the orange color, all
odd bits likewise control orange. Even
bits control the blue color. When
combined it creates white color.

The PN2222A transistors are used to
supply enough current to the video
display, though are not needed when
using the intended orange/blue colors.
Thus, those could be bypassed with the
solder jumper. Different color schemes
could be used if the resistor values are
changed, though the transistors might be
needed to supply sufficient current to the
VGA monitor.

Glue Logic:

The glue logic contains four ICs: 1x 74HC00, 2x 74HC02, and 1x 74HC10. Most of
this logic is discussed earlier when talking over the other components.

One notable feature is how /NMI is KEY-CLK nor KEY-DATA. This causes the /NMI
line to stay low when the keyboard is inactive. When the keyboard is active, the /NMI
line will go high if both KEY-CLK and KEY-DATA are both low. This happens during
the first half of the KEY-CLK cycle and when KEY-DATA has a zero value. When
KEY-CLK rises during the second half of the cycle, the /NMI will always go back low.
Thus if zero was present on KEY-DATA, the /NMI would have a falling edge causing an
interrupt. If a one was present on KEY-DATA, /NMI would never rise, and no interrupt
would occur.

Because of this style, the IRQ-ISR (interrupt subroutine) must wait for the /NMI
interrupt to either occur or not occur. This works well as the /IRQ interrupt is level-
sensitive, thus waiting to the second half of the KEY-CLK cycle when it is high again
makes sense.

Another notable feature is how /SO is SPI-MISO nor SO-TRIGGER. SO-TRIGGER
comes from the video sync and reset signals on the ROM, and thus has an adjustable
frequency. Theoretically it could be replaced with pin #11 on the 74HC161 divider
(which would be SIXTEENTH if labeled). SO-TRIGGER constantly toggles, but when
the MISO line is not in use it is pulled high, so /SO stays low. If the MISO line were to
fall, the /SO line would toggle with the SO-TRIGGER.

In code, upon waiting for a signal on the MISO line, the overflow flag should be cleared
and then it should wait until the next SO-TRIGGER cycle to see if /SO toggled.
Because the falling edge of /SO sets the overflow flag, after just a short wait a branch
statement can be used to determine if the MISO line was either high or low.

Lastly, /WE must be qualified with both PHI2 and QUARTER, thus only allowing
writing to RAM during the second half of PHI2-high. While testing, a 55ns SRAM ran
so fast that spurious data was written in random locations, causing the computer to
glitch. This is because the BE line goes high when PHI2 goes high, but there is still
some time that the address and data buses are not yet correct.

As of now, there is one spare NAND gate. It will be used for some extra feature
eventually.

Pull Up Resistors:

The pull-up resistors are all 10K ohms, a standard value. Both
KEY-CLK and KEY-DATA require pull-up resistors for the
keyboard to work correctly. RDY is not utilized on this system.
SPI-MISO needs to be pulled up for normal operation.

The oddity is a pull-up on /RW. This is most likely not required,
its removal should not affect the system. But it is included for
safety, because when BE goes low, the /RW line goes high-Z.
Though the glue logic already compensates for this, and will not
allow spurious writes to RAM during BE-low, extra safety is best.

Power Supply:

Power is supplied to the printed board at
+5V and 0V GND. POWER-IN can come
from either the USB connector or the
barrel jack. The footprint allows for either
connector. At least 2 amps is needed.

The SPDT switch connects POWER-IN to
VCC. A bypass solder jumper is available
if not wanting to use a switch at all, but
turning off the computer by unplugging
the power cord.

The 100uF polarized capacitor helps regulate power for the entire system.

The LED needs a resistor of at least 200 ohms, depending on the strength of the LED
and how much light is desired. A 1K ohm resistor has been tested and works well.

Oscillator:

This is a 25.175 MHz oscillator, the standard
frequency for VGA signals. The footprint on
the printed board will allow for either DIP-8 or
DIP-14 packages. A solder jumper is available
for oscillators requiring their ENABLE line to
be high, though is not required for other
oscillators.

Glue Logic Power:

Every glue logic IC
needs power and
ground to run. The
schematic splits these
components up for
readability.

Bypass/Decoupling Capacitors:

These bypass / decoupling
capacitors are spread
throughout the printed
board, one per each IC.
Each VCC is as close to the
the IC’s VCC pin as
possible, and each GND
connects to the IC’s GND
pin with as short a trace as
possible.

VGA Connector:

A standard 15-pin D-SUB connector is used for VGA
output. Some lines must be grounded as comparators
for the color signals.

Screw Holes:

Each TestPoint is a screw hole, five in total. The printed board
is a mini-ITX form factor, which has screws at 3 corners of the
square board. A fourth screw hole was added for stability when
not inside of a PC case. The small 1x2 connector can be used
for powering additional devices, or supplying power to the
board from an alternate source.

Reset:

The reset IC is a MCP130-XXXD, but is also
compatible with the DS1813-5. It is important to
use a XXXD version, the pinout for other versions
are different. This IC has an internal pull-up
resistor, thus the /RES line does not need another
separate pull-up resistor. The SW is a simple SPST
tactile push button switch.

Keyboard:

The PS/2 keyboard is connected through a Mini DIN-6
connector. Pins #2 and #6 could be used for connecting a
PS/2 mouse as well, but the mouse requires bi-directional
lines to operate and this system is not capable of that.

Audio:

The audio circuit starts with AUDIO-OUT from the
output latch. Toggling the AUDIO-OUT pin at certain
frequencies from around 100 Hz to 10,000 Hz will
produce sound. AUDIO-OUT goes through a 10uF
capacitor to put a negative swing on the usual 0V to
5V voltage range. The 15K ohm and 10K ohm
resistors drops the voltage max to around 1V with a
center at 0V.

Expansion:

The expansion connector is designed to add more SPI
functionality to the board, and/or create more output pins
through the use of illegal $_3 and $_B instructions. /PHI2
is supplied directly from the 6502 processor, and is only
here to help reduce glue logic on expansion boards.

EEPROM:

The EEPROM used here is a 25LCXXX, various sizes
are compatible. Specific signals needed to use this IC
are supplied through the datasheet. Any SPI IC with the
same pinout is technically compatible, including SRAM
variations.

SDcard:

This 6-pin connector is specifically designed to be used with a
“SPI MicroSD Card Adapter”, which is easily found when
searching the internet. MicroSD cards that are around 2GB are
ideal, specifically SDHC cards. Incompatible cards will
simply not work.

Pricing and Sourcing:

The Acolyte Computer is designed to be to simple and low-cost yet high on features.
Some IC’s are unnecessary for typical operation, and many connectors and switches are
optional.

The price goal for a completed board will be no more than $75 with shipping included.
Prices could go even lower with better parts sourcing and buying in bulk. Currently the
two suppliers are JLCPCB.com and Mouser.com

Other design decisions were to use only commonly available parts from major
distributors, only through-hole components, and no programmable logic chips. This
makes the board approachable to beginners and easy to understand.

Many designs on the board have cost savings in mind, such as using a single RAM and
ROM chip, minimizing glue logic, and the exclusion of a 6522 VIA. Simplicity,
efficiency, yet utility are the main design goals of this project.

IRQ-ISR and NMI-ISR:

; 6502 running at 3.14 MHz,
; PS/2 keyboard running at 17 kHz
; That gives me 184 cycles between signals.
; /IRQ = Keyboard-Clock
; /NMI = Keyboard-Data NOR Keyboard-Clock

vector_irq ; 7
PHA ; 3
STZ key_bit ; 4
DEC key_bit ; 6
LDA #$1A ; semi-arbitrary ; 2

vector_irq_loop ; (1)
DEC A ; 6
BNE vector_irq_loop ; 2, sub-total = 100+
LDA key_bit ; 4
ROR A ; 2
ROR key_data ; 2
DEC key_counter ; 6
BEQ vector_irq_store ; 2
LDA key_counter ; 4
CMP #$FE ; 2
BNE vector_irq_exit ; 2
LDA #$09 ; 2
STA key_counter ; 4

vector_irq_exit ; 1
PLA ; 4
RTI ; 6

vector_irq_store ; 1
PHX ; 3
LDA key_data ; 4
LDX key_write ; 4
STA key_array,X ; 5
INC key_write ; 6
PLX ; 4
PLA ; 4
RTI ; 6

vector_nmi ; 7
STZ key_bit ; 4
RTI ; 6

Operating System:

Turning the Acolyte Computer on brings up
the splash screen on the video display. A
keyboard must be connected to continue. It
is best to connect the keyboard while power
is off, then power the computer back on.

Pressing ESC will bring up the Scratchpad.
It prompts with “F1 for Help”. By pressing
F1 you get a list of different function key
commands. This is the whole of the
operating system. By default you start in the
Scratchpad.

Scratchpad:

The Scratchpad is where you can simply type
characters from the keyboard. It is a very
simple way to demonstrate that the keyboard
is functional. It can serve various educational
purposes as well.

Monitor:

The Monitor is where you can read and write
directly to memory locations. You know you
are in the Monitor when you see the \ prompt.
Additional functions include list, move,
verify, pack, search, and jump. From the
monitor you can write and read from the
EEPROM. Lastly, a mini assembler is
included.

The Monitor was built to resemble WozMon
from the Apple][.

An example command would be:

\C000.C01F

which would display the memory contents
from $C000 to $C01F. ASCII equivalents
also are displayed. Another command:

\C000.C01F L

displays the assembly code equivalent.

An example of an assembly program would
be like this. The first command was:

\8000 @ LDA #$FF

After hitting ENTER the command line
changes to the interpreted equivalent and the
next instruction can be entered immediately.

To run this simple program, use:

\8000 J

BASIC:

The Acolyte Computer comes with a 4K
BASIC, which is very simple and a little
quirky. You know you are in BASIC when
you see the] prompt. It only has 8 variables,
but each variable is an array of 256 bytes
which can be accessed using parenthesis.
Simple math and comparator operators are
available, and a pseudo-random number is
created using the exclamation mark.

This BASIC was build to resemble MINOL
BASIC.

A very simple test program would be:

1 PRINT “HELLO WORLD_”
2 GOTO 1

Line numbers are from 1 to 255, and having
them closer together makes for faster
execution. The underscore prints a newline.
Notice the LIST and RUN commands do not
use line numbers. Pressing ESC while code
is excuting will break the program back into
the prompt.

This BASIC also allows for shortened names.
Note the brevity of the program code here.
Shortening code text helps increase code
compactness, as there is only 12KB of code
space available in RAM.

Lastly, BASIC will only run with extended
RAM installed in the computer. Using the
62256 32KB SRAM will disable all BASIC
functions.

Other Features:

Other features available at any time are:

F4 = Switch Bank, starts second ROM bank
(This might cause problems.)

F5 = Form Feed, clears the screen

F6 = Shift Out, uses inverted colors

F7 = Shift In, uses default colors

SDcard:

Pressing F8 brings up the SDcard screen.
Here the program is reading the first 1K of
bytes from the SDcard that is plugged into the
computer. If there is no SDcard present or if
that particular SDcard is not supported, it will
show an error.

Otherwise, data from the SDcard will
populate the $0400 to $07FF range and the
6502 processor will start executing that code
from the location $0400. This is intended to
be a type of bootstrap program to load more

data and code from the SDcard later. To exit any glitched program, simply press the
RESET button on the computer board itself.

Contacts:

For questions and/or comments, contact Steven “Chad” Burrow at:

stevenchadburrow@gmail.com

Garth Wilson’s 6502 Primer at:

http://wilsonminesco.com/6502primer/

Join the 6502 Forum at:

http://forum.6502.org/

