15

Turning Cousins into Sisters:
An Example of Software Smoothing

INTRODUCTION

In 1970, the PDP-11 was Digital Equipment
Corporation’s newly announced minicomputer
and its first offering in the 16-bit world. Among
the many software components needed to com-
plement the hardware, a FORTRAN system
was high on the list. A FORTRAN project was
begun in 1970 and the first release of the result-
ing product took place in mid-1971. In the suc-
ceeding years, the number of PDP-11 CPUs and
related options increased dramatically to pro-
vide a wide range of price/performance alterna-
tives. What makes the original FORTRAN
interesting, even today, is the extent to which
the basic implementation approach was able to
be extended gracefully to span the entire family
with modest incremental effort.

This paper describes the design concepts,
threaded code and a FORTRAN virtual ma-
chine, used to implement the original PDP-11
FORTRAN product. As the PDP-11 family of
processors expanded with new models and op-
tions, these original design concepts proved
both stable enough and flexible enough to be
employed successfully across the entire family.

of Hardware Differences

RONALD F. BRENDER

When this FORTRAN was finally super-
seded in early 1975, it had two successors. One,
called FORTRAN IV, continued the threaded
code and virtual machine concepts of the earlier
product with similar execution performance
across the PDP-11 family, but offered much fas-
ter compilation rates in smaller memory. The
other successor, called FORTRAN IV-PLUS,
produced direct PDP-11 code and obtained sig-
nificantly improved execution performance for
the PDP-11/45, PDP-11/70, and PDP-11/60
with FP11 floating-point hardware relative to
both of the other FORTRAN:S.

In the Beginning

The PDP-11/20 was a significant advance
over other minicomputers of its time, but was a
bare machine architecture by today’s standards.
There was no floating-point hardware of any
kind (even as an option) and integer multiply
and divide operations were available only by
means of an I/O bus option, the Extended
Arithmetic Element (EAE). (The EAE also pro-
vided multiple-bit arithmetic shift operations;

365

366 THE PDP-11 FAMILY

the PDP-11/20 instructions provided only
single-bit shifts.)

The first disk-based operating system, DOS,
was designed for a minimum standard system
that included 8 Kwords (16 Kbytes) of memory.
After allowing typically 2 Kwords for the resi-
dent parts of the monitor, only 5 K to 6 K re-
mained for other use. Consequently, size
constraints played a major role in the FOR-
TRAN system design and implementation.

There were not many competitors at the time,
but at least one, the IBM 1130, offered a disk-
based operating system and FORTRAN sys-
tem. To meet this competition, an important
goal was to deliver the PDP-11 FORTRAN sys-
tem to the market as quickly as possible, even at
the cost of performance, if necessary.

Neither Compiler nor Interpreter, but
Threaded Code

The fundamental design strategy to be deter-
mined was the structure of the executing code,
the “run-time environment” [DEC, 1974b;
DEC, 1974c].

We were leery of a compiler that generated
direct machine code primarily because of the
size of compiled code. Much of the compiled
code would necessarily consist of calls to float-
ing-point and other support routines, and on
the PDP-11, each subroutine call required two
words of memory, not counting argument
transmission.

An interpreter would easily solve the space
problem, but this had its own disadvantages.
The basic interpreter loop overhead was a con-
cern, but not crucial at that stage in our deliber-

ations. However, a disadvantage of interpreters
is that they must be “always present’” even
though not all of the capabilities are being used.
For example, routines for complex arithmetic
are part of the interpreter even though the par-
ticular program in use does not perform com-
plex arithmetic. Further, we wanted to maintain
the traditional FORTRAN features of inde-
pendent compilation and linking of routines,
and easy writing of routines in assembler for in-
clusion in the program.

The solution was threaded code [Bell, J.,
1973]. Threaded code is a kind of combination
of an interpreter and compiled code with most
of the best features of each. On the PDP-11 it
works in the following way.

The *“‘compiled code” consists simply of a se-
quence of service routine addresses. A single
register (we used R4) is chosen to contain a
pointer to the next address in the sequence to be
invoked. Each service routine completes by
transferring control to the next routine in the
sequence and simultaneously advancing the
pointer.

To illustrate, consider a service routine whose
purpose is to perform floating-point addition of
two real values found in a stack (we used R6,
the hardware stack pointer, for the value stack)
and leave the result on the top of the stack in
place of the parameters. The service routine
would look like the following.*

$ADR: <<code for floating point add>>
JMP @(R4)+

The JMP instruction with deferred auto-
increment addressing mode provides just the

*The brackets << and >>> are used in examples in place of code to indicate the purpose of code that is too bulky and/or not

relevant for the example.

In the PDP-11 MACRO assembler language [DEC, 1976], identifiers may consist of up to six characters from among the
letters, numerals, ““.”” and “$”. Identifiers created by the FORTRAN compiler include either a period or dollar sign to
assure that they are distinct from FORTRAN language identifiers.

In the PDP-11 MACRO assembler language, a colon follows a label and separates the label from assembler instructions.

combination needed to sequence through the
table of addresses. It is a single one-word in-
struction.

The instruction corresponds to the basic loop
of an interpreter. Consequently, there is no cen-
tralized interpreter: the interpreter is distributed
throughout every one of the service routines.

Arguments to a service routine can also be
placed in-line following the routine address.
The routine picks up the arguments using the
pointer register, each time advancing the
pointer for the next use. For this, both the auto-
increment and deferred auto-increment ad-
dressing modes are ideal.

For example, the following service routine
copies onto the stack the value of an integer
variable whose address follows the call:

$SPUSHV: MOV @(R4)+, ~(SP)
IMP @(R4)+

Similarly, the following routine pops a value
from the stack and stores it in the variable
whose address follows the call:

$SPOPV: MOV (SP)+,@(R4)+

JMP @(R4)+

Using the two primitives SPUSHV and
$POPV, the FORTRAN assignment statement:

I=1]

can be implemented by “compiling” code as
follows:*

SPUSHV ; Address of SPUSHYV routine

J ; Address of storage for J
$POPV ; Address of SPOPV routine
I ; Address of storage for |

TURNING COUSINS INTO SISTERS 367

The principal disadvantage of a normai inter-
preter is avoided by representing the address of
a service routine in symbolic fashion as the
name of a module to be obtained from a library
of routines. Only those routines that are ac-
tually referred to are included in the program
when it is linked for execution.

We complete this introduction by briefly il-
lustrating how flow of control and changing
modes is accomplished.

A simple transfer of control, e.g., the FOR-
TRAN statement:

GOTO 100

can be compiled to:
$GOTO,.100

using the service routine:

$GOTO: MOV (R4),R4
JMP @(R4)+

The implementation of the FORTRAN-
computed GOTO statement is illustrated in
Figure 1. Notice that the count of the number
of labels is included in the arguments to the ser-
vice routine. The service routine checks that the
index value is in the correct range; if it is not, an
error is reported and control continues in-line
(no transfer takes place). In this example, regis-
ter 1 (R1)is used as a temporary location within
the service routine.

To enter threaded code mode when executing
normal code, the following call is executed:

JSR R4,$POLSH

*In subsequent examples, the arguments of a service routine will be written on the same line as the routine address. Thus, the

above would appear as:

SPUSHV,]
$POPV.|

This is more compact and suggestive of conventional assembler notations; the effect is identical to the previous example.

368 THE PDP-11 FAMILY

FORTRAN SOURCE

GOTO (100,200,300} 1
100 .
200
300

THREADED CODE
$CGO0TO0,1,3..100..200,.300

.100:

.200:

.300:

COMPUTED GOTO SERVICE ROUTINE

$CGOTO: MoV @(R4}+.R1 ; Fetch value of index
BLE 1$; Error if less or equal zero
CMP R1.(R4) : Compare with label count
BGT 1$; Error if greater
ASL R1 : +2 for word offset
ADD R1.R4 : Pointer to target label
MOV {R4),R4 : Fetch target label
JMP @(R4)+ ; Continue . . .

18: ERROR ‘“‘Computed GOTO value out of bounds™
MoV (R4}+,R1 ; Fetch label count, adjust R4
ASL R1 ; 2 for word offset
ADD R1,R4 ; Pointer to next in line
JMP @(R4)+ : Continue . . .

Figure 1. Threaded code for FORTRAN-computed

GOTO statement.

Threaded mode begins immediately follow-
ing this call. The service routine is:

$SPOLSH: MOV (SP)+,R4
JMP @R4)+

Leaving threaded mode requires no service
routine at all; the operator is simply the address
of the immediately following word of memory.

A Virtual Machine

By now it should be apparent that we have
the beginning of a FORTRAN virtual machine.
Instructions in this machine language are en-
coded as the addresses of the service routines.
The PDP-11 instruction set provides the
pseudo-microinstruction set used to emulate the
FORTRAN machine. Register 4 (R4) is the vir-
tual program counter.

For a complete characterization of a virtual
machine, it is necessary to identify the complete
state of the machine, that is, all of the values
that must be preserved in order to interrupt the

execution of the machine, apply the machine to
another purpose, and later resume the original
execution as though the interruption had not
occurred. In this sense, the state clearly includes
the stack pointer (SP) register and the program
counter (R4) register as well as the memory re-
gions occupied by the program, variables, and
values on the stack. In the actual implementa-
tion, some virtual machine instructions also left
values in general register 0 (RO) or in the pro-
cessor condition codes for use by the sub-
sequent virtual machine instruction. Thus, these
values must also be considered part of the vir-
tual machine state. However, the remaining
general registers of the PDP-11 are not part of
the state even though they are used freely by
individual instructions to hold temporary val-
ues during the execution of a single virtual in-
struction, as illustrated in Figure 1.

This FORTRAN machine went through two
phases of development. In the first phase, the
virtual machine specification did not change;
rather, the implementation was broadened to
take advantage of newer models of the PDP-11
family. Increased performance was achieved
through improved performance of the new
CPU and the floating-point hardware options.
In the second phase, the virtual machine specifi-
cation itself was extended to achieve greater
performance across all of the PDP-11 family
Processors.

FORTRAN MACHINE - PHASE 1

The introduction described the basic tech-
nique, threaded code, by which it was possible
to produce a FORTRAN processor for the first
PDP-11 processor, the PDP-11/20. This section
focuses on the design of the FORTRAN virtual
machine proper and how it was implemented
across the range of PDP-11 CPUs.

The major part of the FORTRAN virtual
machine was relatively ad hoc in form, more or
less closely following the form of the FOR-
TRAN language. The previous example of the

itad (IOYT) gtat + 1 tatis £
COMPpUICa UV 1 U StaCmeit is represenialive o1

the approaches taken. This correspondence be-
tween the language and the virtual machine
greatly simplified the compiler. Variations in

the order of arguments and/or the introduction
of extra qrgumepfe {such as the label list count)

Ui VAaua ai LS (S QS LGV Al st LU UL

were made to aid the speed and/or the error
checking capability of the supporting service
routines.

One part of the machine had a more regular
structure — assignment statements and expres-
sion evaluation. We will focus our attention on
this part of the machine because this is where
the majority of FORTRAN execution time is
spent.

Many details of the machine are easily
sketched. It was a stack-oriented machine - val-
ues were pushed onto the stack, and operators
took their operands from the stack and replaced
them with the result. The hardware stack
pointer (SP) was used to control the value stack.
Consideration was given to using the PDP-11
general registers as fast top-of-stack locations.
However, this was rejected because it violated
the inherent simplicity of the pure stack model
and because analysis showed that the extra
overhead of managing these locations sub-
stantially eliminated any benefits.

Naming conventions were adopted for the
operators as a mnemonic convenience. The
arithmetic operators were named as illustrated
in Figure 2. For example, SADR designated the
routine to add two single-precision (real) oper-
ands, while $ADC designated the routine to
add two complex operands, and so on.

Throughout this design process the size of the
generated code continued to be the most impor-
tant factor. This led to the most unusual aspect
of the machine design.

To push a value onto the stack required two
words: one for the push instruction and one for

TURNING COUSINS INTO SISTERS 369

FORM: Ssot
WHERE o AD For addition

8B For subtraction

For multiplication

DV For division

PW For exponentiation {raising to a power)

nonon o
2
-

For byte data

For logical data

For integer data

For real data

For double-precision data
For compiex data

oo
oo~ ro

NOTE:
“$PW" has a 2-letter suffix. The first indicates the base data-type,
the second the exponent data-type.

Figure 2. FORTRAN Phase 1 arithmetic instructions.

the address of the variable. To reduce this to a
single word, the compiler produced a service
routine for each variable that would push the
value of the variable onto the stack. Such a rou-
tine was called a push routine. In this way, the
compiler reduced the size of the compiled code
by producing specialized service routines that
complemented the general service routines ob-
tained from the FORTRAN library.

For example, the push routine for an integer
variable, I, would be:

$P.I: MOV 1,~(SP)

IMP @(R4)+

The push routine for a complex variable, C,
would be:*

$P.C: MOV #C+8,R0
MOV ~(R0),—(SP)
MOV —(R0),~(SP)
MOV (R0),~SP)
MOV (R0),«(SP)
IMP @(R$)+

Of course, each push routine itself took
space: three words for an integer variable and
five words for a real variable. Consequently, the

*Note that since the stack of the PDP-11 grows downward in memory, values must be copied from high address toward low

address to obtain a correct copy on the stack.

370 THE PDP-11 FAMILY

breakeven point was three uses for an integer
variable and five uses for a real variable.

Three uses of an integer variable were
deemed likely to be achieved in most programs,
especially in larger and more complex programs
where space would be most critical. The five
uses for a real variabie were reduced by some
complex merging of code for multiple push rou-
tines for real, complex, and double-precision
variables. The compiler also maintained a bit in
the symbol table entry for each variable in-
dicating that a push routine was actually
needed. (It is fairly common for a particular
subroutine to reference only a few variables out
of a large COMMON block.)

Pop routines for each variable were also con-
sidered, but rejected. There are typically more
uses of a variable’s value than assignments of
new values. Consequently, the breakeven point
is less likely to be consistently achieved. In-
stead, general pop routines for each data-type
(actually, each size of data value - 1, 2, 4, or 8
bytes) were used.

Figure 3 presents a complete example of the
compiled code produced by the compiler for
two sample assignment statements. The figure
includes push routines automatically generated
by the compiler, as well as the allocation of
storage for the variables of the program. All
service routines not shown are obtained from
the FORTRAN library when the program is
linked for execution.

It should be apparent from this figure that
the compiled code corresponds to the well-
known Polish postfix notation, which is a re-
arrangement of expression information suitable
for stack evaluation disciplines.

The Virtual Machine Across the PDP-11
Family

Even as the FORTRAN system was in its
early development phase, new models of the
PDP-11 family were under development by the

hardware groups. The next in line was the PDP-
11/45 with a floating-point hardware option.
How could the software development group
that had just produced a FORTRAN tailored
for an 8 K PDP-11/20 without even integer
multiply/divide instructions respond with an-
other FORTRAN for the high-performance

FORTRAN SOURCE
K=K+1
X2 = (A-(B++2-4.+ACI/(2.+A)
END

THREADED CODE

SSTART: JSR R4,$POLSH
SP.K : Push K
$P.1 ; Push 1
SADI : Add integer giving K + 1
S$POPIK ; Pop to K
SP.A ; Push A
SP.B : Push B
s$p.2 ; Push 2
SPWR1 1 Bxr2
$P.4. ; Push 4,
SP.A : Push A
SMLR i4.0A
S$pP.C ; Push C
SMLR ;4.-AC
$SBR i Br+2-4."A°C
$SBR s (A=(B+2-4.0A-C))
SP.2, : Push 2.
SP.A ; Push A
SMLR 12.A
$SDVR s 2.8
SPOP2.X2 : Pop to X2

: PUSH ROUTINES

$P.K: MoV K.~{SP)
Jmp @(R4)+

$P.1: MoV #1.-(SP)
Jmp @(Ra)+

SP.A: MoV #A+4,RO
BR SF

$P.B: Mov #B+4,R0
BR SF

$P.2: Mov #2,-(SP)
JMP @(Ra1+

SP4.: Mov #SR.4.RO
BR SF

$P.C: Mov #C+4,R0
BR SF

$P2.: MoV #$R.2+4,R0

$F: Mov -{R0).-(SP) ; Shared code for pushing
Mov -{R0).-(SP) : the values of A, B, C and
JMP @(R4)+ ; the constants 2. and 4.

: STORAGE ALLOCATION

K: BLKW 1

A: BLKW 2

B BLKW 2

$R.4.: FLT2 4.

c: BLKW 2

SR.2:: FLT2 2
END $START

Figure 3. Example of code generation.

DPND_11 /48 with Antinanal hardwasr flanting
rUr-i1 /45 Wil Oplidnidl naraware noating

point? Fortunately, the virtual FORTRAN ma-
chine approach made it relatively easy. All that
was needed was to re-implement the virtual ma-
chine using the new and more extensive ““micro-
code.” The compiler did not even have to be
changed at all! How this was accomplished is
discussed below.

The PDP-11/20, with its EAE option, re-
quired two implementations of the virtual ma-
chine. The PDP-11/45 added two more: one for
the floating-point option and another because it
added instructions for integer multiply/divide
and multiple bit shifting as part of the standard
instruction set.*

Later the PDP-11/40 added a fifth variation
for its Floating Instruction Set (FIS) option.t

By the time we were done, there were five ver-
sions of the FORTRAN machine which corre-
sponded to the family processors as follows:

1. Basic PDP-11/20, PDP-11/40

2. EAE PDP-11/20 with EAE, PDP-
11/40 with EAE
Integer multiply/divide

3. EIS PDP-11/40 with EIS, PDP-
11/45
Integer multiply/divide

4. FIS PDP-11/40 with EIS and FIS

Integer multiply/divide and
single-precision floating point

TURNING COUSINS INTO SISTERS 371

W
!
~J

PDP-11/45 with FP11

p—
[y

Integer multiply/divide and
single/double precision floating
point

ot ™D 11/ 53

Later processors (PDP-11/70, 11/60, 11/34,
11/05, 11/04, and LSI-11) have all matched one
of these five categories.

Figure 4 illustrates the general logical struc-
ture of a typical floating-point service routine.
As presented in this logically extreme form, it
consisted of five completely independent imple-
mentations. They were combined in a single
source file to help manage and minimize the
proliferation of files. (This also significantly

1 /o0

$ADR: .IF NDF EAE'EISIFISIFPP
<<no option basic implementation>>
.ENDC

.IF DF EAE
< <EAE version>>
.ENDC

IF DF EIS
< <EIS version>>
.ENDC

.IF DF FIS
< <FIS version>>
.ENDC

.IF DF FPP
< <FPP version>>
.ENDC

.END

NOTE:

In the PDP-11 MACRO assembler language, .”IF” in-
d a of i ions) that
are included in a given assembly only if a specified
ition is satisfied. The , ".ENDC” termi-
nates the Also, iti can
be tested within other conditional sequences, as iflus-
trated in other figures. In this figure, the condition,
“DF EAE" is satisfied if the name EAE has a defined
value. “"DF EIS" is satisfied if EIS is defined, and so
on. The condition, “NDF EAE!EIS!...” is satisfied if

none of the given names has a defined value.

Figure 4. General logical structure of
conditionalized FORTRAN operator routine.

*These Extended Instruction Set (EIS) operations were similar in function to the capability of the EAE, but were an integral
part of the instruction set instead of an I/O bus add-on. This was more efficient since the initialization necessary to begin

execution of these functions was less.

+On the PDP-11/40, the EIS instructions were an option also.

372 THE PDP-11 FAMILY

aided maintenance.) This one file would be as-
sembled five times, each time with a different
conditional assembly parameter, to produce the
five different object files that implemented the
same operation on the different systems.

In practice, the separation of implementa-
tions was not as complete as shown. Some in-
structions, such as the computed GOTO,
remained independent of the hardware con-
figuration. Generally, the EIS and EAE ver-
sions were localized variations of the basic (no
option) implementation, while the FP11 and
FIS versions tended to be totally distinct.

A more representative illustration of the kind
of conditionalization used is shown in Figure 5.
Notice that the conditional use of EIS or EAE
operations is nested within an outer condi-
tionalization for neither FIS nor FP11. The FIS
and FPI11 versions are distinct.

The FORTRAN Machine and the
PDP-11/40 EIS

Because of the incompatibility in operand ad-
dressing capability between the FP11 and FIS,
the FIS option of the PDP-11/40 seems at best
an architectural curiosity and at worst an un-
fathomable aberration. In a broader per-
spective, however, it was an excellent
compromise between goals and constraints for
the combined hardware and software system at
the time it was introduced.

The marketing requirement was simple.
There must be at least a single-precision float-
ing-point option for the PDP-11/40 to maintain
competitive FORTRAN performance and it
must sell for no more than a given (relatively
low) price. The cost constraint, combined with
other engineering factors, precluded the imple-
mentation of even a simple subset of the FP11
instruction set.

Consultation between the hardware and soft-
ware engineers led to the resulting Floating In-
struction Set. The FIS provided four single-
precision floating-point instructions (add, sub-

$ADR: IF NOF FIS!FPP
< <basic implementation>>

.IF DF EAE
<<EAE variation>>
-ENDC

IF DF EIS
< <EIS variation>>
ENDC

IF NDF EISIEAE
<<no option variation>>
.ENDC

< <basic implementation> >
.ENDC ;NDF FIS!FPP

JIF DF FIS
FADD SP

JMP @(Ra)+
.ENDC ;DF FiS

JF DF FPP
SETF

LDF (SP}+.FO
ADDF (SP)+.FO
STF FO~(SP)

JMP @(RAM+

.ENDC .DF FPP

.END

Figure 5. Partial detail of implementation of $ADR.

tract, multiply, and divide) which corresponded
exactly with the FORTRAN virtual machine
requirements. As seen in Figure 5, the FIS ver-
sion of the FORTRAN $ADR service routine
consists of just two single-word instructions
(compared to the FP11 variant that occupies
five words).

The FIS option for the PDP-11/40 accom-
plished everything that it was supposed to ac-
complish.

FORTRAN MACHINE - PHASE 2

While the FORTRAN product successfully
“supported” the full range of the PDP-11 fam-
ily, the design tradeoffs made for the original
and low end of the family were not valid at the
high end. Benchmark competition of FOR-
TRAN on the PDP-11/45 with FP11 became
significant even though the underlying hard-
ware was the fastest available by clear margins.
The reason is easy to understand. The FOR-
TRAN virtual machine and its implementation
did not fully exploit the hardware capability.

To illustrate, consider the execution of the
statement,] = I + 1, as shown in Figure 3. This
statement compiled to five words of threaded
code (not counting the overhead of service or
push routines), and required 18 memory cycles
to execute. in conrast, the singie PDP-11 in-
struction, INC I, would obtain the same effect
with only two words of code and three memory
cycles to execute. Similar overheads existed for
floating-point operations. As shown in Figure
5, the basic arithmetic operators had to copy
their operands from the stack into the FP11 reg-
isters to do the operation, and then immediately
return the result to the stack.

On the PDP-11/20, integer execution times of
20 microseconds instead of 4 microseconds did
not matter much when floating-point times
where typically 300 to 1000 microseconds.
However, with FP11 times under 10 micro-
seconds for these operations, the tradeoffs are
much different.

Since the existing compiler was based totally
on the threaded code implementation, a com-
plete new compiler that generated direct PDP-
11 code would be needed to fully exploit the
hardware potential. In the meantime, some-
thing was needed to immediately improve per-
formance and relieve the competitive pressure.

That something was provided, not by dis-
carding threaded code, but by extending the
FORTRAN virtual machine architecture. The
extension devised was based on a combination
of systematic and ad hoc pragmatic consid-
erations.

The primary considerations were to:

1. Focus attention on operations for in-
teger, real, and double-precision data-
types. Logical and complex data-types
do not occur frequently enough to merit
much concern [Knuth, 1971].

2. Limit the impact on the compiler to as
small a portion as possible to limit the
programming effort. Fortunately, ex-

TURNING COUSINS INTO SISTERS 373

pression handling and assignment state-
ments were well modularized in the
implementation.

Addressing Modes

The principal concept that formed the basis
of the extended machine was the recognition
that operands could be in any of a number of
locations and that arithmetic operators should
be able to take operands from any of them and
deliver the result to any of them, instead of just
the stack. The principal locations identified
were:

e The stack.

* In memory at an address given as a pa-
rameter.

* In memory at an address given in RO as a
result of an array subscripting operation.

Other “locations” were formalized for particu-
lar groups of operators as will be seen later.

Conceptually, these locations became ad-
dressing modes associated with each operator.
However, any kind of decoding of addressing
modes during execution would destroy the per-
formance objective. Consequently, each com-
bination of operator and addressing modes was
implemented by a unique threaded service rou-
tine.

At this point, a new consideration came into
play. Not only would each routine take some
memory, but the number of global symbols that
must be handled by the linking loader would
rise dramatically. (The system linking loader
maintained its global symbol table in free main
memory; hence, the number of symbols that
could be handled was limited by main memory
size. Fortunately, the minimum system main
memory requirement had independently in-
creased from 8 Kwords to 12 Kwords; other-
wise, the approach would not have been
acceptable.) The above three modes for each of
three operand locations for each of the four

374 THE PDP-11 FAMILY

basic operations for each of the three important
data-types required 3 * 3 % 3 * 4 * 3 or 324 new
service routines. Care would be needed to keep
this explosive cross-product in bounds.

The memory size increase was offset by the
fact that in many cases the push routines of a
variable were no longer needed. This can be ap-
preciated better by looking at some examples.

The Extended Machine

Figures 6 through 11 detail most of the ex-
tended machine and give numerous sample
code sequences.

There were three principal groups of ex-
tended operations dealing with one-dimen-
sional array subscript calculation, arithmetic
operations, and general data movement. Once
again, naming conventions were used for mne-
monic aids. Generally, the first two or three let-
ters (after the “$”’) designated an addressing
mode, the next letter designated the kind of op-
eration and the final letter designated the data-
type. For example, the SADR routine used in
previous figures acquired the name $SSSAR in
this new scheme.

As an example, consider the FORTRAN
statement:

I=J+K+L

This would be compiled to:

$CCSAILJ K ;AddJ,Kand
; put result on stack
$SCCAILL,I ; Add stack,L and

;putresultinl

The PDP-11 code for these service routines is:

$SCCSAL: MOV @(R4)+,~(SP)
ADD @(R4)+,@SP
JMP @(R4)+

SSCCAI: ADD @(R4)+,@SP
MOV (SP)+,@(R4)+
JMP @(R4)+

WHERE s

sarg

barg

SPECIAL CASES

FORM: $sbXz, sarg. barg

[

c

A

1248

If subscript is in mem-
ory (core) and directly
addressable {i.e., not a
parameter or array ele-
ment)

if subscript is pointed at
by RO at execution time

If subscript on execu-
tion stack

If subscript is a parame-
ter

if subscript is contents
of RO (ie, results of
function cail}

if array is not a parame-
ter

I array is a parameter

The array element size
in bytes

Argument address ifs = C
Argument list offsetif s = P
Not present otherwise

Array address minus element size

ifb=C

Address of array descriptor block
{ADB)ifb= A

$CCXO. address

: the

fs generated when the subscript is a con-
stant and the array is not a FORTRAN
dummy argument. The final address is
computed at compile time and is the argu-
ment.

$KAX0. scaled-constant, adb-address

is generated when the subscript is a con-
stant and the array is a FORTRAN dummy

is con-

verted to a byte offset at compile time.

Figure 6.

One-dimensional array

subscripting instructions.

ASSUME

FORTRAN
SOURCE
B(J)

B(l)

BI(5)

A(5)

B(M(2))

NOTE:

SUBROUTINE SUB({AI)
DIMENSION A(10), B{10), M{10}

COMPILED CODE

$CCX4.J.B-4

$PCX4.4,B-4

$CCXx0.8+20

$KAX0,20,8A.A

SCCX0.M+2
SRCX4,B-4

$A A is the address of an array descriptor block for A.

Figure 7.
operations.

Example of subscripting

Where 1 =

FORM: $1rdot, larg, rarg, darg

C If argument is in memory (core}
and directly addressable (i.e., not
a parameter or array element)

R 1f argument is pointed to by RO at
execution time (i.e., as the result
of a subscripting operation)

[

¥ argy contained on the

execution stack (SP)
D If D (destination) is C and is the
same argument
(As above)
(As above)

(As above)

= » x O

1f argument is in core, directly ad-
dressable, and an integer constant
(i.e., special case of C)

1 If argument is integer constant 1
(i.e., special case of K)

C (As above)
{As above}

»

If result is to be placed on execu-
tion stack

For addition
For subtraction

For multiplication

oz o »

For division
1 For integer data
R For real data

D For double-precision data

Argument address if addressing mode = C

Constant value if addressing mode = K

Not present otherwise

Figure 8. Arithmetic instructions.

ASSUME

DIMENSION L{10)

FORTRAN SOURCE COMPILED CODE

A=B+C SCCCAR.B.C.A

A=B+C-D $CCSMR.C.D
SCSCAR,B.A

1=J+5 $CKCALJ.5.I

1=1-5 $DKCSI.5.1

J=J+1 $D1CALJ

L+1N=J+2 $C1SALY
$SCX2,L-2
SCKRALJ,2

I'=un+2 $CCX2.1,L-2
SRKCAL2}

Figure 9. Example of arithmetic

operations.

TURNING COUSINS INTO SISTERS

Move instructions are two address instructions. Data of
any type may be moved.

FORM: $sdVt, sarg, darg

Where s = C If argument is in memory (core)
* and directly addressable

cution time

= S If argument on stack

= G If argument contained in RO-R3
{as result of function call)

= K If argument is integer constant
= 1 If argument is integer constant 1
d = C {As above)

= R (As above)
t = B For byte data
= L For logical data
=1 For integer data
= R For real data
= D For double-precision data

= C For complex data

sarg, darg = Argument address if address mode = C
= Constant value if address mode = K

= Not present otherwise

Figure 10 Move instructions.

ASSUME

DIMENSION ARRAY (10)

FORTRAN SOURCE COMPILED CODE

A=8 $CCVR.B.A

I=1 sicvil

B = ARRAY(J) $CCX4,J,ARRAY-4
SRCVR.B

ARRAY(1) = ARRAY(I+1) $C1SALI
$SCX4.ARRAY-4
$GET3
SCCX0,ARRAY+0
$SRVR

Figure 11. Example of move
instructions.

375

376 THE PDP-11 FAMILY

Notice that no push routines are needed for any
of the variables.

All subscripting operations resulted in the ad-
dress of the array element being left in RO at
execution time. Only one-dimensional arrays
were handled. Two- and three-dimensional ar-
rays continued to be handled as in the more
general Phase 1 implementation.

These forms can occur on both left- and
right-handed sides of assignment statements.

The arithmetic instructions are three address
instructions, taking two arguments and putting
the result in a designated place. These instruc-
tions are limited to +, -, *, / on integer, real,
and double-precision data.

Ad Hoc Special Cases

Within this general framework, a number of
additional ad hoc addressing modes were in-
corporated.

For each of the arithmetic operators and each
of the three data-types, the first operand ad-
dressing mode could be given as D to designate
that it was the same as the destination core ad-
dress and the destination parameter was elimi-
nated. This was not done for the second oper-
and based on the simple observation that pro-
grammers will almost always write assignments
as:

A=A+...
instead of’
A=...+A

This added 12 more service routines.

For the integer operators only, the second
operand could be given as K to designate that it
was a constant given as the parameter instead of
the address of the value. This was not done for
the first operand for reasons similar to the case
above.

For integer add and subtract operators only,
the second operand could be given as 1 to desig-
nate that it is the constant value 1 and no pa-
rameter is present. This is simply a frequent
special case of the previous use of K.

By combining the above, the FORTRAN
statement:

K=K+ 1
is compiled to:

$DICALK
where the service routine is simply:

$DICAL

INC @(R4)+
JMP @(R4)+

This code occupies two words and requires
five memory cycles to execute. This is not quite
as good as the two words and three cycles
needed for direct PDP-11 code, but far better
than the five words and 18 cycles required by
the earlier implementation.

General Results

Execution improvement varied, of course,
with the particular programs used. Over a large
set of programs, the following guidelines were
obtained.

® Programs that were floating-point in-
tensive increased in speed by factors of 1.1
to 1.6, with 1.3 being representative.

e Programs that were integer intensive in-
creased in speed by factors of 1.4 to 2.4,
with 2.0 being representative. (One partic-
ularly simple benchmark increased in
speed by a factor of 4!)

Moreover, because of the reduced need for push
routines, most programs increased in size by
less than 10 percent.

The improvement for integer operations was
better than for floating-point operations for
several reasons. Integer operations were more
easily “‘optimized” because they took place in
the basic CPU general registers. The FP11 has a

Aot s —moic

e set of ﬂuauug-puiut registers, and
floating-point computations must be performed
only in those registers. Also, the FP11 operates
in either single-precision or double-precision
mode depending on a status bit; the compiler
implementation was not suitable for tracking
the state of this bit and, hence, each floating-
point operation continued to bear the overhead
of reestablishing the state as needed by that op-
eration. (This is the purpose of the SETF in-
struction shown in Figure 5.)

The performance improvements of the Phase
2 system with its extended virtual machine were
obtained with a design, development, and test-
ing effort of about three man-months. For that
effort, PDP-11 FORTRAN regained a strong
competitive position that held reasonably well
until FORTRAN IV-PLUS, an optimizing
PDP-11 code-generating system, replaced it 18
months later (in early 1975).

+
separat

REAL MICROCODE AND THE FORTRAN
MACHINE

Clearly, the FORTRAN virtual machine de-
scribed above could be implemented in “real”
microcode instead of the PDP-11 instruction
set. This was considered during the design plan-
ning for the PDP-11/60 which features a writ-

TURNING COUSINS INTO SISTERS 377

abie control store microprogramming option
[DEC, 1977a]. But, while the analysis showed
that a significant improvement could be ob-
tained, the result, at best, would be comparable
to the performance already achieved by the
FORTRAN iV-PLUS product. Consequently,
it was not done.

The analysis proceeded along the following
lines. Execution time was considered in three
categories: instruction fetch and decode, oper-
and fetch and/or store, and execution time
prope:. Since the analysis is a comparison of
different FORTRAN implementations for a
given machine, the basic execution times are as-
sumed to be the same and neglected. The result-
ing comparison, thus, shows the number of
words of memory and the number of memory
cycles for each implementation.

For this presentation we shall consider the
following two FORTRAN statements as rea-
sonably representative of FORTRAN as a
whole.

[=J«*xK+L
A(D)=B{J)+4

For these statements, the size and memory
cycles are easily determined by examination of
the code generated by FORTRAN and FOR-
TRAN IV-PLUS, respectively. These values are
shown in Table 1.

For the hypothesized micro-thread imple-
mentation, the code size is unchanged from
FORTRAN, while the memory cycle count is

Table 1. Comparison of Size and Time Requirements of Sample Statements with
Different Implementation Techniques

I=J*K+1L All)=B(J) +4
Technique Size Time Size Time
PDP-11 threads 6 words 20 cycles 9 words 38 cycles
FORTRAN IV-PLUS 8 words 12 cycles 14 words 20 cycles
Micro-threads 6 words 12 cycles 9 words 22 cycles
Model 7 words 11 cycles 9 words 17 cycles

378 THE PDP-11 FAMILY

reduced by eliminating the instruction fetches
that occur in the service routines. These results
are also shown in the table. Comparison of the
results shows that the micro-thread implemen-
tation is faster (as expected), but also that its
speed is no better than that of FORTRAN IV-
PLUS. Could this be coincidence or is there rea-
son to believe these results should be obtained?

To answer this, we formulated a simple in-
tuitive model for the expected size and speed of
code on an idealized FORTRAN machine. To
estimate the code size:

e Count one unit for each variable that is
referenced (e.g., A(I) counts as two).

e Count one unit for each operation per-
formed (e.g., assignment or subscripting
are unit operations).

To estimate the memory cycles for execution:

¢ Count one unit for each variable that is
referenced.

e Count one unit for each operation per-
formed.

e Count one, two, or four units for each
value fetch or store operation depending
on the size of the data.

This very simple model is appropriate only
for compilers that produce code based only on
isolated source information, which is true of the
original FORTRAN. Optimizing compilers,
such as FORTRAN IV-PLUS, do better than
suggested by this model by eliminating or sim-
plifying operations (for example, by constant
expression elimination or moving invariant
computations out of loops, and/or by keeping
values in registers instead of main memory, es-
pecially across loops). Consequently, the model
serves primarily as a relatively implementation-
independent frame of reference for comparing
alternative implementations.

The sizes and cycle counts from this model
for the sample statements are also shown in
Table 1. These values are quite similar to values
for both the micro-thread and FORTRAN IV-
PLUS implementations.

We interpreted these results as a clear demon-
stration that a micro-threaded implementation
could not significantly outperform the existing
FORTRAN IV-PLUS implementation. Fur-
ther, effort expended for greater performance
would be better directed toward improved opti-
mization in FORTRAN IV-PLUS (which
would benefit existing hardware products) or
toward faster hardware per se.*

There is also a broader interpretation of the
results that is worth reflection. The threaded
implementation was designed to be a good
FORTRAN architecture. Yet, when imple-
mented in microcode in a manner comparable
with the host PDP-11 architecture, the perform-
ance is close to that achieved by the FOR-
TRAN IV-PLUS compiler and also close to
that of an “ideal” model. One is led to speculate
that the PDP-11 with FP11 is also a good FOR-
TRAN architecture.

ACKNOWLEDGEMENTS

Many individuals contributed to the design,
implementation, and evolution of the PDP-11
FORTRAN product. The following were par-
ticularly involved in those aspects described in
this paper. Jim Bell, Dave Knight, and the au-
thor participated in the initial design evaluation
that led to the basic virtual machine. Dave was
project leader for the first versions of the prod-
uct. Rich Grove participated in the support of
the FP11 and FIS options. The extended virtual
machine design and implementation, and the
microcode feasibility analysis were done by the
author. Finally, Craig Mudge assisted in the
preparation of this paper with valuable dis-
cussion and criticism, and by not accepting
“no” for an answer.

* Note that Digital did both. FORTRAN IV-PLUS V2 and the FPJ1-C were both released in early 1976 with each offering

significant performance improvements.

