Breaking NES Book
6502 Core

andkorzh, HardWareMan, org

A book on how the MOS 6502 processor works, but basically just a copy of the
wiki from the GitHub.

Translated with www.Deepl.com/Translator (free version)

Rev. B3



Foreword

In this revision of the book all found errors are corrected and a detailed description of some
6502 instructions is added.

A C++ simulator has been written on the basis of the studied circuits, which has confirmed their
correctness and has passed all functional tests of 6502 by Klaus Dormann.

We are also thankful to ttlworks, for allowing the publication of the optimized 6502 circuits re-
sulting from his 6509 (which is based on the 6502 core) research.



Contents

OVBIVIBW....vueiiiiietei ettt ettt sttee | ettatbebesettaebebensacaeseseees 5
PINMOUL ...ttt tetee | taebetetetea ettt eseneat 22
CHOCK. ..o ssaesa e 26
Top Part
INSEIUCLION REGISTEN ...ttt seaene | aeeiessseseaesseaesseaeseseas 33
EXtENAEA CYCIE COUNTET ..ot seanes | sessesssessssesseaessessssesssen 37
DIBCOTET ...ttt neien tetietee ettt 41
PrE-dECOTE. ..ottt sttt stieanties | aetiettie sttt 53
INEEITUPT PrOCESSING......viiviiiciciccccc s evieaiesnss s 58
RANAOM LOGIC.tuiiriiiitiicicctieie ettt e stieints | tetiestaetesesseaesseseeseseie 65
REGISEEIS CONIOL.....cuimiiieiiiiiicientc ettt sene etstaestbetebetaebessesesseseans 69
ALU CONEIOLcctiiiitiiirittie ittt sissins | eusessessessessessessessessensenns 75
Program CouNter CONEIOL.........cciireirieirienteiceeiseie ettt etsteesnsbesebessesessesesaesseans 83
BUS CONIOL....eiiiitieie ettt eeiee ettiessbesebessebesseaesaeseans 88
DT - =T OO PO PP 98
FIAgS CONTIOL...cciuiiieiiciieitic ettt tie | etataestbesseteesetessesesseneas 107
FlagS. ottt ebeteestt ettt seenean 113
BranCh LOGIC. ..ttt sasiens | sessessssesassesassessesseenean 121
CONLIOl COMMIENAS......uieiiiricit ettt taee tieesetessetessesesesetesseens 126
Bottom Part
AAAIESS BUS.....eeie ettt etne | ftaees et b ettt eaees 132
DIata BUS......ouieiiiiciitcete ettt ettt tte | taeaetet ettt neae 137
REGISTEIS. ...ttt sttt nte taeseb ettt bbbttt neae 141
ALU ettt fesaese et 145
Program COUNTET.........c.oiueiiiiecie ettt ettt benens | staesetesettaeaesssesaeieseneas 161
6502 OPEIALIONS. ...ttt ettt ettt tse | ehettataetes sttt aeees 167



This page is needed so that the schematics on the spreads start on even pages.



6502 Overview

The 6502 processor was developed by MOS. It was based on the architecture of the Motorola
6800 processor:

6502 6800

In both cases the top part is occupied by the decoder and random logic, and the whole bottom
part of the processor is occupied by the context and the ALU.

Architecture

The processor is divided into two parts: the upper part and the lower part.

The upper part contains the control logic, which issues a number of control lines (“commands")
to the lower part. The lower part contains the context of the processor: internal buses and regis-
ters, with one exception - the flags register (P) is in the upper part in a "spread out" form.

Also in the lower part is the ALU.

The processor is clocked by the PHIO clock pulse, both half-cycles are used. During the first half-
cycle (PHI1) the processor is in "Set Address and R/W Mode" mode. During the second half-cycle
(PHI2) the processor is in "Read/Write Data" mode, during this half-cycle external devices can
put data on the data bus and get data from the processor.



LY

T

PHIT RDY
Hiz
FHIN
ouaen
NP
NIRQP rpston prdy_latoht
s
i
—
—
1 i
—
DECODER
T1
<1
PHI1
PHIZ

DB

56

The pin layout corresponds to the real chip

ABH

1T |J|'|r|.-| |ﬂ|

REGS 0L Y, 5)
Pz

is

E

56

o 880UT
sraDL

B

SBIN  ADLOUT

R

A9 AD AN A2

=)}




JRES

PHIZ

CLOGK GEN

PHI2

PHI1

DuarcH

RWLtoh

PREDECODE

PHIt

DATA LATCH

U LT

x1 |00
21|01
21|02
x1 |03
1 :2)
[x1]05
x1 |06

1 Jo7



Registers

PD: current operation code for precoding

IR: instruction register (stores the current operation code)

X, Y:index registers

S: Stack pointer

Al, Bl: input values for ALU

ADD: Intermediate result of an ALU operation

AC: accumulator

PCH/PCL: program counter in two halves

PCHS/PCLS: program counter auxiliary registers (S stands for "Select")
ABH/ABL: registers for output to the external address bus

DL: data latch, stores the last read value of the external data bus

DOR: data output register, holds the value which will be written to the data bus
P: flag register, actually consists of a set of latches scattered around the circuit

The following registers are directly available to the programmer: A (accumulator), X, Y, S, P, PC.

External Buses

There are only two external buses: a 16-bit address bus (ADDR) and an 8-bit data bus (DATA).
The address bus is one-way - only the processor can write to it. The data bus is bidirectional.

Internal Buses

(] ADH/ADL: address bus
®  SB: Special bus, register exchange bus
e  DB: Internal data bus

During the second half-step (PHI2) all internal buses are precharged and have a value of OxFF.
This is done because it is faster to "discharge" the transistor at the right moment than to
“"charge" it (the change of 1=>0 is faster than the change of 0=>1).



Register-Bus Connections

0
ABH || ABL s BI ADD AC PCH | |PCHS | | PCL | |PCLS DL DOR PD n P
- - v - v - w 't u

SB

DB

&
&
or >
>
>
4

f ©-7)

f ©2)

ADL

External address bus (16-bit)

External data bus (8-bit)

o 6 6 6 4

By connecting buses and registers in series, the processor executes a variety of instructions. The
variety of connections provides a variety of processor instructions, and the division of instruc-
tions into clock cycles allows complex actions to be performed. In addition, the ALU is controlled
(addition, logical operations, etc.).

Software Model

Addressing Modes

Addressing modes are described here because they should be kept in mind when analyzing
circuits.

Addressing is a way to get the operand to (or load it from) the desired memory location. The
developers of the 6502 were very generous and added as many as two X and Y index registers to
the context.

“Indexed" means that an offset is added to the memory address in a certain way to get a new
address. This is usually needed to access arrays. In this case the beginning of the array will be a
fixed address and the value in the index register will be the array index (offset).



List of addressing modes:

(] Immediate (immediate operand). In this case the operand is stored in the instruction itself
(usually the second byte, after the operation code). Example LDA #$1C: A = 0x1C

e Absolute (absolute addressing). The instruction specifies the full 16-bit address from which
to get the operand. For example LDA $1234: A = [$1234]

®  Zero Page Absolute: Developers have made an optimized version of absolute addressing by
adding the ability to address only page zero (pages are 256 bytes in size). Example LDA
$56: In this case the processor itself makes the highest 8 bits of the address equal to 0x00,
while the lowest 8 bits are taken from the instruction. The final address is 0x0056. A =
[0x0056]. This is done to save instruction size (one byte is saved).

® Indexed: In this addressing mode an offset from the X or Y register is added to the constant
address value. For example LDA $1234, x: A =[$1234 + X]

®  Zero Page Indexed: Similar to Indexed but only the X register can be used. Example LDA
$33, x:A=1[$0033 + X]

And then the special magic begins:

®  Pre-indexed Indirect: The value of the operand which is the address in page zero is added
to the value of register X and the indirect address is obtained. The address the indirect
address refers to is then used to get the value of the operand. Example LDA ($34, X):A
= [[$0034 + X]]. Important: When you add an address and a value in the X register, it
"wraps" around 256 bytes. That is, it does not wrap to the higher half of the address. (OxFF
+ 0x02 will be 0x0001, not 0x0101). Indirect means "take address by address".

®  Post-indexed Indirect: Different from the previous one in that the indirect address from
page zero is selected first, and then the index register Y value is added to it. Example LDA
($2n), Y:A=[[$002A] +Y].

10



Instruction Set

The 6502 has all the necessary instructions and also includes such rather handy instructions as
bit rotation (ROL/ROR) and bit testing (BIT). Not all processors of the time contained such in-
structions.

The instruction type and address mode are fully contained in the operation code, to simplify
decoding, but the bus width (8 bits) does not allow all instructions to be executed in a single
clock cycle. Also, the decoder is somewhat unoptimized, so the minimum instruction execution
time is 2 clock cycles, with the first clock cycle always taken by sampling the operation code (the
first byte of the instruction).

Summary of instructions:

Instruction Description Instruction Description

ADC Add Memory to Accumulator with Carry ROL Rotate One Bit Left (Memory or Accumulator)

AND “AND" Memory with Accumulator ROR Rotate One Bit Right (Memory or Accumulator)
ASL Shift Left One Bit (Memory or Accumulator) RTI Return from Interrupt

BCC Branch on Carry Clear RTS Return from Subroutine

BCS Branch on Carry Set SBC Subtract Memory from Accumulator with
BEQ Branch on Result Zero SEC Set Carry Flag

BIT Test Bits in Memory with Accumulator SED Set Decimal Mode

BMI Branch on Result Minus SEI Set Interrupt Disable Status

BNE Branch on Result not Zero STA Store Accumulator in Memory
BPL Branch on Result Plus STX Store Index X in Memory

BRK Force Break sTY Store Index Y in Memory

BVC Branch on Overflow Clear TAX Transfer Accumulator to Index X
BVS Branch on Overflow Set TAY Transfer Accumulator to Index Y
ac Clear Carry Flag TSX Transfer Stack Pointer to Index X
o Clear Decimal Mode TXA Transfer Index X to Accumulator
cu Clear interrupt Disable Bit ™S Transfer Index X to Stack Pointer
v Clear Overflow Flag YA Transfer Index Y to Accumulator
cMP Compare Memory and Accumulator

cPx Compare Memory and Index X

cpy Compare Memory and Index Y

DEC Decrement Memory by One

DEX Decrement Index X by One

DEY Decrement Index Y by One

EOR "Exclusive-Or" Memory with Accumulator

INC Increment Memory by One

INX Increment Index X by One

INY Increment Index Y by One

IMP Jump to New Location

ISR Jump to New Location Saving Return Address

LDA Load Accumulator with Memory

LDX Load Index X with Memory

LDY Load Index Y with Memory

LSR Shift Right One Bit (Memory or Accumulator)

NOP No Operation

ORA “OR" Memory with Accumulator

PHA Push Accumulator on Stack

PHP Push Processor Status on Stack

PLA Pull Accumulator from Stack

PLP Pull Processor Status from Stack

11



The developers chose the encoding so that it would be easier to process by decoder and random
logic.

Table of 6502 opcodes (for reference):

You can find a description of the instructions in any Reference Manual for 6502.
Interrupts
6502 interrupts:

®  |RQ: hardware interrupt. Can be disabled with flag | (interrupt disable), if flag I=1 the inter-
rupt is "disabled" and does not go to the CPU.

e NMI: non-maskable interrupt. It has higher priority than IRQ, triggered on falling edge.

®  RES: hardware reset. After powering up the 6502 it is necessary to set the /RES pin to 0 for a
few cycles so that the processor "comes to its senses".

®  BRK: software interrupt. It is initiated by the BRK instruction.

12



Note on Transistor Circuits

The transistor circuits of each component are chopped into component parts so that they don't

take up too much space.

To keep you from getting lost, each section includes a special "locator" at the beginning that
marks the approximate location of the component being studied on the large 6502 "family por-

trait" (https://github.com/emu-russia/breaks/blob/master/Docs/6502/6502.jpg)

Example locator:

Note on Logic Circuits

The logic circuits are mostly made in the Logisim program. The following element is used to

denote DLatch:

DLatch (transistor circuit)

DLatch (logic equivalent)

enable

enable
val

DLATCH

For convenience, the logical variant of DLatch has two outputs (out and /out), since the current
value of DLatch (out) is often used as an input of a NOR operation.

13



https://github.com/emu-russia/breaks/blob/master/Docs/6502/6502.jpg
https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/imgstore/dlatch_tran.jpg
https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/imgstore/dlatch_logic.jpg

A
A1l eE

o mmw

14



nr -Ilrllr_lr
t

Hn“ AR AR

1S T
[FCECTCE

|
LEe )

|

-

Iy

IR
| lp-.‘ ".-." r[15

15



16



_w

Los

soqmm====q

_l.-||a._.....:.___.. ;
.””.”.

Jm.
| — _.|||.__I_.n=

ey |14

R

._mi

| | gttty
= =

:1uln

AL:_

| X

o

JEr ===

meu |

17



-*ﬂf—ng

ﬂa Il el Mﬁﬁﬁ ?éﬁ uﬂ\ A el ':Iilﬁi

o

el

nr

=
[ ™=

5

o
2

3

:-Fn—!!}:ﬂ'!uﬂﬁ-;

=
r i Thfg" s

IR

ey !Ll1= 2 u"a}'ﬂﬂ_'; LHiuruﬂiJQ!F"ﬁ'J lﬂjiw’lﬂ

]‘“1 h.h 1 I]‘l’! mii L!'Eja] f'n]

L

! E;“n 4[‘,11 m‘ r r‘lﬁl ﬂhlL.

r m:lilﬂ! HT iti- a “I,L IILH.I il i"‘ i
Jillj " i[l‘l‘ i]’ ) L'ir Lih

AR,
Ei"

I—f
l—h
S

s

iEL]r"

nn:giaiaimﬂﬁ'_

18



"“l'i!' H’ﬂ MLL !st,,ﬁur'“ L'L"'E,I-‘- L e
i [:f ol do ll'!' H“ﬁr‘uﬁ_ﬁ = Jl il

0 i e e A
i ) £ El ml* "qlﬁ b:,ﬁ, I“'”'_' :5}1 el

u'_‘

r[]ﬂ_ﬁi. .JP N »: Al {"%u—e-md
pi’nf“hﬂ,”[rlh* ‘1!'! ‘i‘(if 5 iirillujﬂh il L?Jl? ]EIE

=T =

s o
‘““ﬂ]-f!fi* ’“3;1 ‘fgﬁ qu.rr.. ”tj""lr“ :

- wma 2 m Gl

19



20

. . T . . o =0
— mr oM o5 olFTq o)™y ol " ol . 5 9B
000 . BN . By . . b Pp o B n . 3
. b o . B o 3 g .
a . i 0 il o 5 =11 0
- . g . .. . 0
a - 0 Q O H n <
0 & . . . .. . . g 0
.
c 5 Oy Ty ORI 3.0 Ea) o) o E
o . oY oy oy oy oY oy oy ps
- D el el R A A .l el
. . i - i D o 0 . . 0 . .
. . . O a o g O p o .
o . . - . . . . .
- = el e bele e e Y =0 . e ae .
. % 0 . . . D . . .
. N - O Ca— C— . 0 0 g



o .
o el de
o .
ollelle
ol e
B
.17
.
alpk=0110A
DR
.

.

O =
. .
0

o
B
.

of Iel e .
o Lol e .
of Lef LIl iR
ol .
eee e
.
of [ofl[el]e
o
a .
.
o
. of Telte
o
.
ol ool e
318 g
o .
. D Qo . N
.
Alpg k=1
. El—
. .
0
. o =
.
0
n "0
.
= .
o 80
. %
. 0

21



Pinout

The study of any integrated circuit begins with the pinout.

E
o
=)

Name Direction Description
vCC => 6502 Power +5V
AN 6502 => Ground
/NMI => 6502 Non-maskable interrupt signal, active low
/IRQ => 6502 Maskable interrupt signal, active low
/RES => 6502 Reset signal, active low
PHIO => 6502 Reference clock signal
PHIN 6502 => First half-cycle, processor in writing mode
PHI2 6502 => Second half-cycle, processor in read mode
RDY => 6502 Processor Ready (1: ready)
SO => 6502 Forced setting of the overflow flag (V)
R/W 6502 => Data bus direction (R/W=1: processor reads data, R/W=0: processor writes)
SYNC 6502 => The processor is on cycle T1 (opcode fetch)
AO0-A15 6502 => Address bus
DO0-D7 6502 <=> Data bus (bidirectional)
N.C. -- Not connected

22




Vcc/Vss

From the official datasheet we know that the operating range of Vcc = +5.0 volts +/- 5%.
Clock Generator

The clock signals are described in a separate section (see clock generator).

/NMI, /IRQ, /RES

Each contact contains a FF where the interrupt arrival event is stored. The FF value corresponds
to the control signals /NMIP, /IRQP and RESP (the value from FF for contact /RES is output as
direct value). The "P" in the name of the control signals stands for "Pad" (contact).

RDY

The RDY pin goes to the internal RDY signal and also through the DLATCH delay chain as the /
PRDY ("Previous Ready") signal. /PRDY goes to the decoder input Branch TO.

The RDY pin can be used to temporarily suspend the processor, e.g. while an external device
performs a DMA.

23



SYNC

G

The SYNC signal comes from the internal T1 signal (opcode fetch).

SO

So

The internal signal S0 is fed to the flag V input to process the control signal 1/v.

R/W

The WR signal comes from dispatcher and defines the operating mode of the processor (WR:1 -
processor writes data, WR:0 - processor reads data).

Address Bus
See Address Bus.

Data Bus

See Data Bus.

24



Notes in the margins for future revisions of the book.

25



Clock Generator

The 6502 includes two clock reference circuits: an external and an internal one.
The processor inputs one clock signal, PHI0, and outputs two clock signals, PHI1 and PHI2.

This principle is based on the fact that each clock cycle of the processor consists of two
"modes" (or "states"): write mode and read mode.

During write mode the PHI1 signal is high. During this time, external devices can use the ad-
dress set on the external address bus of the processor.

During read mode the signal PHI2 is high. During this time external devices can write data to
the processor's data bus so that the processor can use it for its own purposes.

The signals PHI1 and PHI2 are called half-cycles and are derived from the original clock sig-
nal PHIO as follows:

®  When PHIO is low - the processor is in write mode and the PHI1 signal is high
e  When PHIO is high - the processor is in read mode and the PHI2 signal is also high

PHIO PHI1 PHI2

Internal Clock

26



The circuit is quite complicated, because it is not quite "digital". The numerous transistors that
act as inverters slightly delay the PHIO signal, so the PHI1 and PHI2 signals going inside the pro-
cessor are a bit "laggy". Here is the logical representation of the circuit:

PHI1

. L
£ or—" o1
PHI2 1 F o1
N

Logical analysis:

4

The layout of the clock signals should be about the following:

e PHI1/PHI2 are slightly lagging relative to PHIO

The lower level of PHIT/PHI2 is slightly longer than the upper level, so that both signals are
guaranteed not to have a high level

ps  500ns  1000ns 1500ns  2000ns  2500ns
Value ’ i i i i

3000ns  3500ns  4000ns  4500ms
ops [[ps

5000ns  5500ns  6000ns

B0 PHIO HO
21 PHI1 B1 F y
2 PHIZ B0

- o - T - I L

The simulation in Altera Quartus shows "lag”, but does not show the elongated lower level (it is
hand-drawn in the picture above).

27



BigEd from the 6502.0org forum suggested that he ran a simulation on the 6502 FPGA netlist and
got the following sweeps:

File View Options

Zoomin | [Zoor 0] _oelete | neload |

32.069u
= )

File View Options

Zoom n | [Zoom 0] _pelete | retoad At |

26.045u
= D

26.005u
(K1

The signal designations are as follows: clkO = PHIO, cp1 = PHI1, cclk = PHI2 (according to the
netlist with Visual6502)

The schematic on which his simulation was based corresponds to the one in Balasz's documenta-

g 5 B aﬁ o2
="

http://forum.6502.0org/viewtopic.php?f=88&t=2208&start=195

It turns out that because of the asymmetrical inverter stage the rising edge is delayed, so the
lower level is as if "delayed".

28


http://forum.6502.org/viewtopic.php?f=8&t=2208&start=195

The official documentation gives the following diagram:

86 (IN)

@, (ouT)

@2(0UT)

Clock Timing — MCS6502, 03, 04, 05, 06

External Clock

The PHI1/PHI2 reference signals are also output to the outside for consumers.

The logic circuit of the external wiring of the clock signals does not differ from the internal wiring
circuit, except that the outputs of PHI1/PHI2 go to the same contacts through the "comb" of
powerful transistors.

Why PHI

In the official 6502 datasheet the half-cycles are called "phases", respectively the name of these
signals is ®1 and ®2. For unification we use the designations PHI1 and PHI2.

29



Optimized Schematics

t !
o
D
B = l
PHIL PHI2
’
H §

I
PHIL
-
I

>
inverter
= =
ariver ‘
]
ariver
‘79

inverter

inverter
=

4 pHIL

PHIG —

=
|
;

https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki_Deepl /6502/clock.md
8:https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/imgstore/clock_internal.jpg

30



Notes in the margins for future revisions of the book.

31



TOP PART

32



Instruction Register

The Instruction Register (IR) stores the current operation code, for processing on decoder. The
operation code is loaded into the IR from predecode logic.

Transistor Circuit

FETCH  FETCH

1RO|IRL

[®ro

"7

The outputs in the schematic are on the left because the decoder is topologically located on the
left side.

. IR0 and IR1 are combined into one common line TRO1 to save lines

®  |ROis used only for the 128th decoder line (IMPL) (this operation with IR0 is part of the
random logic)

e  /IR5 goes additionally to flags and is used in set/clear flags instructions (SEI/CLI, SED/CLD,
SEC/CLC)

33



Logic

FETCH
PHI1

DLATCH

ino[@} 1 @ro
DLATCH

i1 [@} _. @r1
DLATCH

in2[@} _. @r2
DLATCH

in3[@} _. @rs
DLATCH

ns[@} _. @re
DLATCH

fins[@} 1 @rs
DLATCH

e [@} 1 @ re
DLATCH

in7[@} _. @7

e During PHI1 the IR value is overloaded from the Predecode (PD) latch, but only if
the FETCH command is active

(] During PHI2 the IR is "refreshed" (this is not shown in logic circuit)

It should be noted that an inverted operation code (PD) value is fed to the IR input and is also
stored on the latch in an inverted form.

34



Optimized Schematics

PHI2

— o il )

74125
4 [% o /IR®
é

/PDB ” S - E;‘

/pp1—| it
/PD2—| P
s R
/PD4— /igi
/PD5—| 7 Pl
/PD6—| e
/PR prid

PHI1  FETCH

https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki_DeeplL/6502/ir.md
18:https://github.com/emu-russia/breaks/blob/master/BreakingNESUWiki/imgstore/ir _logic.jpg

35



Notes in the margins for future revisions of the book.

36



Extended Cycle Counter

The 6502 has 3 cycle counters:

e The base counter, used for short instructions (Counts TO-T1 cycles)
(] Extended counter (which we will talk about here) used for long instructions (Counts cycles

T2-T5)

®  Counter for very long instructions (Counts cycles RMW T6-T7)

One cycle (T) refers to two consecutive half-cycles (PHI1 + PHI2) of the processor.

Transistor Circuit

CYCLE COUNTER 2-5

[ready

=

ready a

The whole circuit is a shift register, with a control sig-

nal T1 as its input. While the shift register is running, the
value of T1 is shifted and goes to the output of /T2, then
to /T3 and so on. The /T2-/T5 outputs are in inverse logic.

The shift register is used as a counter for easy transfer of
the current cycle (/T2-/T5) to the decoder input.

The register is reset by the TRES2 command and is done
after the instruction has been processed.

The circuit includes multiplexers on the /ready signal.
This is done so that when the processor is not ready
(ready=0) - shift register remains in the current state.

37



Logic

PHIT 1

PHIZ |1

TRES2 |1

Iready ;1

Tt

OLATCH

t_lateh

DOLATCH

I 2_latehz

DLATCHJ
1]

p

1

t2_lateh

DLATCH

I 13_latehz

{m

&/

DLATEHJ
1

P

1

t2_lateh

DLATCH

I 14_latehz

i

DLATCHJ
1]

=

14_latzh1

DOLATCH

I 5_latchz

@ﬂ'd

DLATCHJ
1]

P
t5_lateh1

{)ms



Optimized Schematics

PHI2

16_latch2
E [ 6_latch1
PHI2
PHIL
shife register PHI2
4 _laten2 autputs change uith PHIL

Jenante

- T selear
A7

¥
v
E%
\o%
v

v oo

PHI1

PHIL

2 4 latch

E [ 2_tawcht
. T Iready
res pHI2 TRES2
[

https: //qnhub com/emu-— russ1a/b|'eaks/blob/master/BreaklnqNESHlkl DeeplL/6502/extra_counter.md
14:https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/imgstore/extended_cycle_counter _logic.jpg

39



Notes in the margins for future revisions of the book.

40



Decoder

The decoder is an ordinary demultiplexer, but a very large one. The formula for the demultiplex-
er is 21-to-130. Sometimes the 6502 instruction decoder is also called a PLA.

Topologically, the decoder is divided by ground lines into several groups, so we'll stick to the
same division, for convenience.

The input signals are:

e /TO, /T1X: current cycle for short (2 clock) instructions. These signals are output

from dispatch logic.
e /T2, /T3, /T4, /T5: current cycle for long instructions. Signals are output from extended cycle
counter.

e /IR0, /IR1, IRO1: the lower bits of the operation code from instruction register. To reduce the
number of lines 0 and 1 bits are combined into one control line TRO1.

®  |R2-IR7, /IR2-/IR7: direct and inverse values of the remaining bits. The direct and inverse
forms are needed to check the bit for 0 and 1.

The decoder logic is based on the exclusion principle. Schematically, each output is a multi-input
NOR element, which means that if at least one of the inputs has a 1, the whole line will NOT
work.

That is, the decoder outputs are not in inverse logic (as is usual), but in direct logic.

£

5
T
o
e
i
T
5
E
D
Ts
T
B
5
i
T
T
5o
T

j\?m"';

5a i T

=L

e

e
Ts
5
=
B
k
e
T
e
s
El
E
5
5
=
[

41



F G
éééﬁéééééétﬁﬂéééééé ECLECEELECEREC € &
IR A | R AR R
SRR MY AR | SRR SRRy RREEEY
R o ke S IR G i e M EE b EETa b
) e i B 3| . R bt L
& Eammah i 5 D S
—liﬁﬁ.ﬂﬁi H Y HU Y Y Y U ey
il
[Upt PUpE UG Ry U U O G W 8 B I e B WUy Y ey n
H K
e ccece ££ceEecececcle £
alw w mblel (el (SR S R R
B | (RSl T R R (& g A
EpipuE g AL Y Ty iy
= P Ry Lty g Oy oy e Rl (B ey il e ‘.;
E H L Y Y Y Y Y Y Y iy Y im
m|m o | m | m || m| om| e | e | e | | i | | | a
o HL L W WY Eat [E U R R R P R R .

Special Lines

Addi

tional logical operations are applied to some decoder outputs, which although territorially

are in the decoder area, are actually part of random logic. Most likely this logic got into the de-
coder simply because it was more convenient to split the connections that way.

List:

Internal Push/Pull line: a special (129th) line that does not extend beyond the decoder. It is
used to "cut off" Push/pull instructions when selecting instructions. It is used in three lines:
83, 90, and 128. Appears on the schematic in duplicate, for different parts of the decoder.

/PRDY: this line goes to decoder line 73 (Branch TO)

IRO: normally the common signal IR01 is used to check the two lowest bits of the operation
code, but exclusively for the 128th line (IMPL), IRO is used (IR0 is not included in the mask
for the table below).

42



PLA Contents

Grou N Mask value (Raw bits) Decoded fal_){ Comments Where to use
A

AO1 0 000101100000100100000 100XX100 ™ STY Register control
A02 1 000000010110001000100 XXX100X1 T3 OPind, Y Register control
AO3 2 000000011010001001000 XXX110X1 T2 OP abs, Y/ Register control
A04 3 010100011001100100000 1X001000 TO DEY INY Register control
205 4 010101011010100100000 10011000 0 VA Register control
206 s 010110000001100100000 1100XX00 0 CPYINY Register control
B

801 6 000000100010000001000 XXXTXTXK b5 OP 2pg, X/Y & OP abs, X/¥ Register control
B02 7 000001000000100010000 TOXXXX1X TX LDX STX A<->X S<->X Register control
803 8 000000010101001001000 XXX000X1 ™ OPind, X Register control
BO4 9 010101011001100010000 1000101X T0 TXA Register control
BOS 10 010110011001100010000 1100101X T0 DEX Register control
806 it 011010000001100100000 1110X%00 0 CPXINX Register control
BO7 12 000101000000100010000 100XXX1X TX STXTXA TXS Register control
508 3 010101011010100010000 1001101X 0 s Register control
B09 14 011001000000100010000 T01XXX1X T0 LDX TAX TSX Register control
B10 15 100110011001100010000 1100101X T DEX Register control
811 16 101010011001100100000 11101000 b INX Register control
B12 17 011001011010100010000 1011101X T0 TSX Register control
B13 18 100100011001100100000 1X001000 T DEY INY Register control
814 19 011001100000100100000 101XX100 0 Lov Register control
815 20 011001000001100100000 1010XX00 0 LDV TAY Register control

43




cot 21 011001010101010100000 00100000 T0 ISR Register control
co2 22 000101010101010100001 00000000 TS BRK Register control; Auxiliary signal BRKS
o3 23 010100011001010100000 0001000 T0 Push Register control
coa 2 001010010101010100010 01100000 4 RTS Register control
cos 25 001000011001010100100 0101000 3 pul Register control
o6 26 000110010101010100001 01000000 TS RTI Register control; Auxiliary signal RTI/S
co7 27 001010000000010010000 011XXX1X ™ ROR Iﬁ;’;’éﬁ‘;?sﬁ;i‘i‘ﬂi‘y /ROR signal for
o8 28 000000000000000001000 XKXXXXXX 2 T2 ANY TA;)X"'E"Y signal T2 (processor is in cycle
o9 29 010110000000011000000 010XXXX1 T0 EOR ALU Control
c1o 30 000010101001010100000 0101100 ™ Qi (excluder for ALU Control
cn 31 000000101001000001000 XX011XX T2 ALU absolute ALU Control
ci2 32 010101000000011000000 00000KK1 T0 ORA ALU Control
The entire "left” half
13 33 000000000100000001000 XXXXOXXX T2 of the opcode table ALU Control
(values X0-X7)
cia 34 0 XXX T0 0 ANY ALU Control
cis 35 000000010001010101000 0XXOX000 2 :th;;t IIRTIS':aTcSk :Z%ZIC;TH&OL ALU Control; Auxiliary
operations on T2
16 36 000000000001010100100 0XXOXX00 3 BRK JSR RTI RTS ALU Control

Push/pull + BIT JMP

44




Dot 37 000001010101010100010 00X00000 4 BRK JSR ALU Control
D02 38 000110010101010100010 01000000 4 RTI ALU Control

D03 39 000000010101001000100 XXX000X1 3 oPX,ind ALU Control

Do4 40 000000010110001000010 XXX100X1 T4 OPind, Y ALU Control

D05 41 000000010110001001000 XXX100X1 2 OPind, Y ALU Control

D06 42 000000001010000000100 XXX X 3 RIGHT ODD ALU Control

Do7 43 001000011001010100000 0101000 ™ pul ALU Control

Do 44 001010000000100010000 TIIXXXTX ™ INC NOP ALU Control

D09 45 000000010101001000010 XXX000X1 4 OP X, ind ALU Control; Bus Control (DL/DB)
D10 46 000000010110001000100 XXX100X1 3 OPind, Y Bus Control (DL/DB)

D11 a1 000010010101010100000 01X00000 ™ RTIRTS fi‘;::f;‘é?' (DL/DB); Auiliary
b12 48 001001010101010101000 00100000 T2 ISR Auxiliary signal JSR2

D13 49 010010000001100100000 11X0XX00 T0 CPY CPXINY INX ALU Control

D14 50 010110000000101000000 T10XXXXT T0 cmp ALU Control

D15 51 011010000000101000000 XKD 0 sBC ALU Control; Auxiliary signal SBCO
D16 52 011010000000001000000 X11X00K1 0 ADC SBC ALU Control

D17 53 001001000000010010000 001XXX1X ™ ROL ALU Control

45




EO1 54 000010101001010100100 01X01100 T3 JMP ind ALU Control

E02 55 000001000000010010000 OOXXXX1X iR ASL ROL Bus Control

E03 56 001001010101010100001 00100000 15 JSR Auxiliary signal JSR/S
E04 57 000000010001010101000 0XX0X000 T2 BRKJSR RTI RTS Push/ Bus Control

EO5 58 010101011010100100000 10011000 T0 TYA Bus Control

E06 59 100000000000011000000 OXXXXXX1 m UPPER ODD Bus Control

EO07 60 101010000000001000000 XTIXXXXT m ADC SBC Bus Control

EO8 61 100000011001010010000 0XX0101X m ASL ROL LSR ROR Bus Control

E09 62 010101011001100010000 1000101X T0 TXA Bus Control

E10 63 011010011001010100000 01101000 T0 PLA Bus Control

EN 64 011001000000101000000 10TXXXXT T0 LDA Bus Control

E12 65 010000000000001000000 XXXXXXXT T0 ALL ODD Bus Control

E13 66 011001011001100100000 10101000 T0 TAY Bus Control

E14 67 010000011001010010000 0XX0101X T0 ASLROL LSR ROR Bus Control

E15 68 011001011001100010000 1010101X T0 TAX Bus Control

E16 69 011001100001010100000 0010X100 T0 BITO ALU Control (AND)
E17 70 011001000000011000000 00TXXXX1 T0 ANDO ALU Control (AND)
E18 al 000000001010000000010 XXXTTXXX T4 OP abs XY Bus Control (ADL/ABL)
E19 72 000000010110001000001 XXX100X1 T5 OPindY Bus Control (ADL/ABL)

46




<- Branch, additionally affected by the /

Fo1 73 010000010110000100000 XXX10000 T0 PRDY line (from the RDY contact), Ausiliary signal BRO
immediately on the spot

F02 74 000110011001010101000 01001000 T2 PHA Bus Control (AC/DB)

F03 75 010010011001010010000 01X0101X T0 LSRROR ALU Control (SR)

F04 76 000010000000010010000 O1XXXTX ™ LSRROR ALU Control (SR)

F05 7 000101010101010101000 00000000 T2 BRK PC Control

F06 78 001001010101010100100 00100000 3 ISR PC Control

Fo7 79 000101000000101000000 100XXXX1 ™ STA Ausiliary signal STA

F08 80 000000010110000101000 XXX10000 T2 BR2 (Branch T2) Creva i{:sg:a:::‘: pen

F09 81 000000100100000001000 XXXXOTXX T2 zero page Bus Control (DL/ADL)

F10 82 000000010100001001000 XXXX00X1 T2 ALU indirect Bus Control (DL/ADL)
The entire "right" half of the opcode

F1 83 000000001000000001000 XXXXTXXX 2 ffpbc'g éizﬁu‘ls?lo‘ﬁ)ﬁlx;:si!/:c‘i‘c‘i‘mona|- Auxiliary signal ABS/2
Iy applied to this line, right in place

F12 84 001010010101010100001 01100000 T5 RTS Ausiliary signal RTS/5

F13 85 10 XX T4 T4 ANY Bus Control (NOADL)

F14 86 100 XX 3 T3 ANY Bus Control (NOADL)

F15 87 010100010101010100000 0X000000 T0 BRK RTI Bus Control (NOADL)

F16 88 010010101001010100000 0101100 0 MP Bus Control (NOADL)

F17 89 000000010101001000001 XXX000X1 T5 opX,ind ﬁ\“‘;fm'm‘ (NOADL,
The entire "right" half of the opcode

F18 %0 000000001000000000100 XXXXTXXX 3 table (X8-XF values). The Push/Pull Bus Control (IND)

opcode exclusion operation is additional-
Iy applied to this line, right in place

47




Cycle Counter Reset, Bus

Got 91 000000010110001000010 XXXT00X1 i oPind, Y Sy o
G02 %2 000000001010000000100 XTTXXX e RIGHT ODD Cycle Counter Reset
PC control circuit and PC
Go3 93 000000010110000100100 XXX10000 13 BR3 (Branch T3) e control circt
Go4 9 000100010101010100000 0X000000 ™ BRKRTI PC Control (J8)
Gos 95 001001010101010100000 00100000 ™ IR PC Control (J8)
PC Control (JB), ENDX (Long
Go6 9% 000010101001010100000 01X01100 ™ mp kb Ay
<= Push/pull opcodes, used as an
PP 129 000000011001010100000 0Xx01000 ™ - hush/pull opcodes..
For RW Control and to
Go7 97 000101000000100000000 1003000 ™ STORE obtain an auxiliary STOR
signal
G08 9 000101010101010100010 00000000 4 BRK Rw Control, IPOUT (flags
control)
609 99 000101011001010101000 00001000 T PHP IPOUT (flags control)
RW Control, ENDX (Long
610 100 000100011001010101000 0X001000 T2 Push ARt
) ENDX, Bus Control; Auiiary
G611 101 000010101001010100010 01X01100 T4 IMPind o b
ENDX (Long instruction
612 102 000010010101010100001 01X00000 T5 RTI RTS o o
613 103 001001010101010100001 00100000 s ISR ENDX (Long instruction

completion)

48




Ho1 104 000110101001010101000 01001100 it IMP abs ENDX (Long instruction
Ho2 105 001000011001010100100 0X101000 i} pull ENDX (Long instruction
HO3 106 000010000000000010000 XTXXXX1X ™ LSR ROR DEC INC DEX NOP (4x4 Cycle Counter 5-6
Ho4 107 000001000000010010000 QOXXXXTX ™ ASLROL Cycle Counter 5-6, flags
Hos 108 010010011010010100000 01X11000 T cLisel flags control
Ho6 109 101001100001010100000 0010X100 T BIT flags control
Ho7 110 010001011010010100000 00X11000 T cLesec flags control
Ho8 m 000000100110000000100 XXX101XX 3 Memory zero page X/Y MemOP
Ho9 112 101010000000001000000 XTIXXXXT T ADC SBC flags control
H10 13 011001100001010100000 0010X100 T BIT flags control
H11 114 011001011001010100000 00101000 T PLP flags control
H12 115 000110010101010100010 01000000 T4 RTI flags control
H13 116 100110000000101000000 110XXXXT T <3 flags control
H14 117 100010101001100100000 11X01100 T CPY CPX abs flags control
H15 118 100001011001010010000 00X0101X T ASLROL flags control
H16 119 100010000101100100000 11X00X00 T CPY CPX zpg/immed flags control
K
P/P 129 000000011001010100000 0XX01000 ™ < Push/pull opcodes, used as an
exclusive for K09
Ko1 120 010010011010100100000 11X11000 0 CLD SED flags control
K02 121 000001000000000000000 XOXXXXXX ™ /IR6 Branch Logic
K03 122 000000101001000000100 XXXOT1XX BE] Memory absolute MemOP
Ko4 123 000000100101000001000 XXX00TXX 2 Memory zero page MemOP
K05 124 000000010100001000001 XXXXO00X1 5 Memory indirect MemOP
K06 125 000000001010000000010 XXXT1XXX i\ Memory absolute X/Y MemOP
Ko7 126 10000000 ™ /IRT Branch Logic
K08 127 001001011010100100000 10111000 ™ av flags control
IMPL. The Push/Pull opcode exclusion
operation s additionally applied to this
K09 128 000000011000000000000 XXXX10X0 ™ line, right on the spot. Also, the mask for Bus Control (DL/DB)
this line does not take into account the
& ~IRO operation

49




What Raw bits mean

If you think of a decoder as a 21x130 ROM, where each bit repre-
sents a transistor, then the Raw bits value will represent one line
of the decoder. This is why it is called the mask value.

For example, the picture shows the 5th line of the decoder. The bit
counting starts from bottom to top. 0 means no transistor, 1 means
present.

Online Decoder

You can use an online decoder to highlight opcodes: https://
github.com/emu-russia/breaks/blob/master/Docs/6502/

decoder.htm

In the Raw bits field you can insert the mask value from the table
above and when you press the Make IR Mask button you will get
the decoded mask value (e.g. 11X00x00). The decoded mask value
can be inserted into the IR field and when the Decode button is
pressed, the opcodes that correspond to the specified IR mask will
be highlighted in the table.

Branch TO Skip

From pin RDY a special line /PRDY comes through the delay line. If the processor was not ready
when the previous instruction finished, then if the next instruction is a conditional branch, its
cycle 0 (TO) is skipped. The meaning of this operation is not known yet.

Why the decoder is so big and scary
Actually, there is nothing scary about it.

The decoder was compiled according to the requirements of random logic. Random logic is
divided into several parts (domains) and each part corresponds to its own zone in the decoder,
which was specially chosen so that the necessary opcodes were processed.

In other words - it is not random logic that adjusts to decoder, but vice versa. The impression
that the decoder is "more important" is formed simply because it is above random logic.

50


https://github.com/emu-russia/breaks/blob/master/Docs/6502/decoder.htm
https://github.com/emu-russia/breaks/blob/master/Docs/6502/decoder.htm
https://github.com/emu-russia/breaks/blob/master/Docs/6502/decoder.htm

“¥SIG1iZ9
TXISYTXI0AXLITS
durELia
ON9iEG

Y047 I0YXLi8G
2657000°01:46
285'01:95
dWD'BLieS

INTXLigY
InNd"yINdxLigh
ATX7SBUELIY

ONIXELibH
1A bLiEY
ANITUSIbLiZh
QNS TH

HHOYHONBLITE
ILH"GLBE

SLUP1i8Z
dHSd™WHSd BLiZZ
INI'GLISZ
USI'BLIST

/breaks/t

oo

—russia

thub.com/emu

1@:decoder

1

//9

oo

https

©o

°o

Decoder by ttlworks

Cle]

/18
/T4
/13
/1R1
/17
/IR6
/I8
/11X

/PRDY

id sequencer).

ignoring sai

y PLA product term
NOR gate.

Output of a product term
T'm simplifying things here...

ever
is a

not

0f course,

NI XLIGH T/ /

#TEPT
TATXTSEV B LIZHT

ZAdI'ZXAD TLHET
YI0Y"YISUTLIEET
TAITIXdI'TLIZET

dWITLITET

INI™J30"XUSTXLIBZT
dINd"YINGELISTT
SEYTdUrZLIBTT
aNg:ZTT

USI'GLISTT
SLYTILYGLIGTT
pasnuni,TT
durbLETT

INT'PLIOTT
XLS™ALS ULS'XLiG@T
INd"HSd"*Lig@T

SEYTANV'ELISE //
ONI“X'G1i86
dNIBLiZ6
5

1ssection

ONITANY'ZLiTE

dZ"ANV'Z1i88

ttluorks 6509 d

ST USTXLIES
visTeLZ8
YHSA'ZLiT8

ygreLies
ON9'62
ATONT'GLi82
ATXTSBYpLIZZ

T9'BLITL
voTeLies

WASTTUX0UTYISK TLIZS
2857200 TLi99
20Y™H0THOI“ONY'TLIGS
TUAL'BLIYS

XHd™ NI ILYZLIES

/s
4
el
2
/1Ra
/1R7
/R4
/1IR3
/1R2
/1R6
/178
/11

©o
©o

©o

oo

8zt
az
52T
szt
vzr
£21
2zt
w1

62T

Bad
Elad

Fiad
st
vir
£t

wr
12
6o

80T
ot
9T
soT
et

ot
207

a1

51

slob/master/BreakingNESWiki_Deepl /6502/decoder.md



Notes in the margins for future revisions of the book.

52



Predecode

The circuit is designed to define the "class" of an instruction:

®  Ashort instruction which is executed in 2 clock cycles (TWOCYCLE)
e  Aninstruction of type IMPLIED which has no operands (takes 1 byte in memory)

53



The operation code received from the external data bus (D0...D7) is stored on the PREDECODE
latch (PD) during PHI2 (in inverted form), after which the precoding logic immediately deter-
mines the instruction class (the circuit is combinatorial).

The output /TWOCYCLE is used by a short cycle counter. The output /IMPLIED is used by the
PC increment logic.

The PD latch value is fed to the instruction register input in inverted form.

Also the control line 0/1IR is fed to the Predecode logic input which "injects" the BRK operation
into the instruction stream. This occurs during interrupt processing, to initialize the BRK se-
quence (all interrupts simply mimic the BRK instruction, with slight modifications).

The pre-decode circuit works closely with the dispatcher, all control signals go there.
Logic

The corresponding gates are marked on the transistor schematic:

nors

end?D
norl
nandl

P2 —

ORpd Do 1 {>o——{DiMPLIED

{t)mrOCYCLE

iPDO

Po—
Do—D
o)
Do—D
o
Po—(
Bo—D
Po—(

2
E]
v

iPD1

g

iPD2

=}

o iFD3

iFD4

2

iPD5

iPD6

?

R

=1

iPD7

o7 H>

54



The predecoding logic is self-descriptive:

®  2-cycle instructions are: Direct operand instructions OR all single-byte instructions EXCEPT
push/pull instructions (specified by mask XXX010X1 + 1XX000X0 + XXXX10X0 - 0XX0XX0X)

®  Single-byte instructions are set by mask XXXX10X0

TWOCYCLE instructions:

oR: spg o A5 spy

2

ORA zpg,X M AsL =pg,x 4

.

o zom s,

EE S Pre—,
222 --- | a0 =pa,x o RoL zpex 2
R ps LR e
222 --- [ 20m =pex H 12 =pe,x
227 --= | a0¢ spe | 50m =es
2 --- | aoc spe.x H ror spa.xH 2

==

220 sbz,

27¥ 2pg,x M 72 2pg,x 27X zpg, ¥

273 abe, ¥

10¥ zpg M oA zpg 4 10K =pg

=T
e

.

abs,x

ind ADC abs ROR abs .

+
. O
2
. 0
2
v
-
7
-
2
jax

BT e
227 - SEC spa,X o INC zpe,x o 32 INC abs,X Y 227 ——-
5 [ = [ =] =] = = = = [ = *

01 | B2z ze: o ora ing,¥ M 727 ——- [ 222 [ 222 ——- ORA 2pg.X § ASL spg.X M ORA abs,X KM asr abs,X
03 | BMI re2 M AND ind,¥ Sean] M= lasgas AND zpg.X M ROL zpg.X AND abs, X ROL abs,X L
05 | sve zex 3 1SR spg.X EOR abs,X KM ISR abs,X
07 | BVS zex S ROR zpg, X 4 ADC abs X ROR abs, X 289
o5 iy 2 STX 2pg.¥ STA abs,X -—
oc|cey 4 DEC zpg MF abs DEC abs
o0 | BE ze1 M cup ing,y M 727 ——- [ 222 ——- | 222 ——- P =pg,X § 22C =pg,x P abs,x B8 Drc abs,x
or | BEQ re2 M sEC ind,Y 222 S5C 2pg,X M INC 2pg.X 4 SBC abs, X INC abs,X

55




Optimized Schematics

/P08

/P00

3
s

/P01 oot

ez /PD2

/P03 Jena

/P04

/P04

from external data bus

IE

8

/P08

3

/P06

/P07

Z} el AT
T
/IR 1XX@,08X0 HXXX1@XE

oy
RRT.

/THOCYCLE

/P07

https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki_DeeplL/6502/predecode.md
24:https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/imgstore/predecode_logic.jpg

56



Notes in the margins for future revisions of the book.

57



Interrupt Processing

Interrupt processing includes the following circuits:

NMI edge detection

Cycle counter 6-7 for interrupt handling

Setting the low-order bits of the interrupt vector address (ADLO-3)
Circuit for issuing internal signal DORES.

B Flag

Three signals /NMIP, /IRQP and RESP come to the input of the circuits from the corresponding
input pads.

NMI Processing

Transistor circuit (includes cycle counter 6-7 and NMI edge detector):

NMI DETECT

Ly
o
w
=
S
(€
&
=
o
o
w
=
=

58



Interrupt vector address and Reset FF

Transistor circuit:

The circuit for getting the control signal DORES ("Do Reset") (which is binned to all other inter-
nals) is combined here with the interrupt vector setting circuit to save space.

59



B Flag

Transistor circuit:

60



Logic

Interrupt handling schematic:

PHI1
L

lveaﬂy

INTERRUPT CYCLE 6-7

DLATCH DLATCH

bi_latchz
bi_lateh

INMIP

i DO— {DBRK?
RESET FLIPIFLOP

OLATCH
_Q )BRKSJ‘\'D\
{Doores

tes_latoh1
DLATCH

DLATCH NMI EDGE DETECT

bi7_lateh
donmi_latch

delay_latoh1 delay_latch2 /DONMI

DLATCH NMI_FF1

f1_lateh
DLATCH

{Doonm

biGe_latch

INTERRUPT CHECK
BR2
BR2|x1
Tofr}

NRQP |31

IDONMI

b_latch2



https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/imgstore/logisim/int_control_logisim.jpg

To handle interrupts an additional circuit is required to generate cycles 6 and 7 (because they do
not come from the decoder) (control signals BRK6E and BRK7). And the control signal BRK6E
("Break Cycle 6 End") starts during PHI2 of cycle 6 and ends during PHI1 of cycle 7. This is done
to determine the edge of the /NMI signal.

The detection of the /NMI edge is done by a classic edge detection circuit based on two RS trig-
gers.

The /RES signal is additionally stored on RESET FLIP/FLOP, because it is required for other ran-
dom logic circuits (particularly for special control of the R/W pin).

The arrival of any interrupt is reflected on flag B, the output of which (B_ouT) forces the proces-
sor to execute a BRK instruction (operation code 0x00). This way the developers have unified the
handling of all interrupts.

The last small circuit forms the address (or vector) of the interrupts (control signals 0/ADLO, 0/
ADL1 and 0/ADL2), which control the lowest 3 bits of the address bus.

Schematic for setting the address of the interrupt handler:
FFFANMI, 1010

FFFC:RESET, 1100
FFFEIRQ/ERK, 1110

RHizbd DLATCH
3
BRK5[x1 >0 : iDL
zadlO_latch

DLATCH
BRK7? “_j

1 | N,
DORES_po_:D‘: > ) 0iADL1

zadl1_latch
DLATCH

5 l
€ 0/ADL2
IDONMI._ E zadI2_latch

62



Optimized Schematics

pHiz flipflop */NNI uas high® .- F
N high 3E%
NI fafting edge detected ud
7ia | e | CH
£ porer
nmip_tatch NMLFF2 EE
faten 222
/
&1 39’  /oownt
P2

I

delay_Tatcht
1 tach

ore7 Tatcn P
INTERRUPT CYCLE 6-7
5 75 ready, has pricrisy cver 8/
eaay” S Sinen 14 cas ‘conploted
16
Tt D 8RK2 TS ready or T6
brks _Latent N
= Doy [P
Y g o
prts :
ks Taich2
Pt set1Flaagac
< | sready <I> -
8 BRK sequence:
g | T ferchBRK opcode or force BRK, increnent PC uhen BRK
H fetch/discard data, increment BC uhen BRK
sy . push PCH on stack
push P on stack suaic
e read interrupt vecror lou yte . 'm
265 Fead interrupt vector high Bute 1 .
w2eTSINT 22 S P gh By S <[> MW
jrocs
Taien
el l naos

BHIL

delay latch2

oowrc

Resp

PHIz
oot

=)

BRKS.ROY

ANL_talling_edge_detected
TS ready or 16

RESET FLIP/FLOP

Pz

oopes

asmoLa
25d18 Tatch
oo

res

res_Tatent

T8 ready:
i)
Wit > ata
REs > a0

T6 readys

e

e Nl 3 it
BEs > dax

Te_reaay_pHi2

A_n Do, | OOWE /et ttting edge
Pl @» o

/1Rap

1ot detect
during T,
o alting 12 brancn

fliptiop
e b ey

boTeen2

17:interrrupt_logic

63



Notes in the margins for future revisions of the book.

64



Random Logic

The name has nothing to do with random numbers, it simply reflects the essence of randomly
scattered circuits here and there.

This logic is the thinking organ of the processor and completely determines its behavior when
processing and executing instructions.

From the hardware point of view, the random logic is a "handmade" product of MOS engineers,
which is a mess of transistors and wires. Therefore, it would be more correct to use the name
“chaotic logic" instead of random logic.

There is no need to give a full-size transistor circuit here, because it will be easier to master it by
component parts.

Below you can see all the function blocks of the random logic:

Register control

ALU control

Program counter (PC) control
Bus control

Execution logic (dispatch)
Flags control logic

Flags

Conditional branch logic

65



i .'.!!!!!!!!!....r

T [

Principle of Operation

In general, the operation of the logic is quite complex (did you think | would say simple
again? :smiley:):

e The execution logic (dispatch) conducts the work of the entire processor. It determines
when to terminate an instruction and also controls the PC increment and the cycle counter.
Additionally it includes a processor readiness circuit (RDY) which is controlled by the RDY
pin.

e After the execution logic has started executing the next instruction - the code of that in-
struction as well as the current cycle is fed to the decoder

e  Depending on the results of decoding the control circuitry of registers, ALU, PC and buses
give outward to the lower part special control commands

e Additionally, the behavior of the processor is affected by its flags as well as interrupt han-
dling logic. And flags are also affected by executable instructions.

All this is closely coupled to control the lower part of the processor, where its context (registers),
ALU and communication with the outside world via buses are located.

66



§ TTTTTF ﬁfﬁfdﬁﬁ??? Fﬁffﬁﬁﬁhﬁﬁ njna[s{s]njninin]s Miniaininia]s[s{={sjnilin]s[s[slsisinls]sls) DG
@) '

7

@ FLAGS CONTROL

1] i |aa§ag

T

SHiE

DS EhT) e 1Tl

67



Auxiliary Signals

This section contains a table of auxiliary signals exchanged between all parts of the random logic (for reference):

Name From To Description
ACRLT Dispatch Dispatch One of the ACR Latch outputs
ACRL2 Dispatch Bus Control One of the ACR Latch outputs
AND ALU Control Bus Control Used when forming an ALU ANDS command
BR2 Decoder PC Control, PC Increment Branch T2
BR3 Decoder PC Control, PC Increment Branch T3
BRFW Branch Logic, ALU PC Control Branch forward (whenever taken)
BRKS Decoder Interrupts, Regs Control Used to obtain the STKOP signal and also goes into the interrupt handling circuit
BRK6E Interrupts ALU Control, Bus Control BRK6 (cycle 6 of the interrupt sequence), during the half-step PHI2
/BRTAKEN Branch Logic PC Control Branch taken
c.out Flags ALU Control Flag C value
/c.out Flags ALU Control Flag C value (inverted)
DL/PCH PC Control Bus Control Intermediate signal
bout Flags ALU Control Flag D value
JSR2 Decoder Regs Control, ALU Control, Bus To obtain the JSXY signal and other bus control circuits
J1sR2 Bus Control Regs Control Intermediate signal, JSR2 inversion
IMPL Decoder ALU Control Decoder X128. Additionally modified with Push/Pull (X129) and IR signals.
INC_SB ALU Control Bus Control Intermediate signal (‘Increment SB")
NOADL Bus Control ALU Control Intermediate signal ("No ADL")
PC/DB PC Control Dispatch Auxiliary output signal for the RW Control circuit that s part of the dispatcher
PGX Bus Control ALU Control Intermediate signal ("Page X')
Jready Dispatch Al Global intemal processor readiness signal
RTI/S Decoder Regs Control, ALU Control Used to obtain STKOP and NOADL signals
SBXY Regs Control Bus Control Intermediate signal ("SB Bus XY")
sTk2 Decoder Regs Control, ALU Control Ausiliary signal from decoder (X35)
sTkop Regs Control ALU Control Intermediate signal ("Stack Operation")
STOR Dispatcher Regs Control, ALU Control, RW Intermediate signal
STXY Regs Control Bus Control Intermediate signal ("Store X,Y")
T0 Short Cycle Counter Al Processor in the TO instruction execution cycle
T PC Control Al Processor in the T1 cycle
T Decoder Al Processor in the T2 cycle
s Long Cydle Counter Al Processorn cycleRMW 6 the e T s the old nameof thesignal butwe wl ot
T Long Cydle Counter Al Procesorn cyle RMW 7 the e T6 s the oldnameof thesignal butwe wl ot
7TsT Bus Control Flags Control Intermediate signal (‘Z Test")

68




Registers Control

Most likely this control circuit will be observed first, so | will write here: be prepared to see a
large number of intermediate signals in the control circuits, which can come sometimes from all

other parts of the random logic. A summary table of all the intermediate signals can be found in
the main section with the random logic overview.

The register control circuit is responsible for generating control commands to exchange registers
with the internal buses.

/1o /10 /TO
g 10 /0 yma > Lo 410 . o™
7

Jrix fTax /T 20

XY/S B STOR

69



Inputs:

Signal Description
X0-X26 Outputs from the decoder
/ISR2 Intermediate signal from the bus control circuit
STK2 Just an auxiliary signal from another part of the decoder (X35)
STOR Auxiliary signal from the dispatcher circuit
ready Global processor readiness signal

Outputs:

Signal Description
SBXY Intermediate signal for bus control circuitry. This signal s actually in inverse logic (#SBXY)
STXY Intermediate signal for bus control circuitry
STKOP Intermediate signal ("Stack Operation”) for the ALU control circuit
#Y/S8 Intermediate signal to latch, to obtain a Y/SB command
#X/5B Intermediate signal to latch, to obtain a X/SB command
#SB/X Intermediate signal to latch, to obtain a SB/X command
#SB/Y Intermediate signal to latch, to obtain a SB/Y command
#5/5B Intermediate signal to latch, to obtain a S/SB command
#S/ADL Intermediate signal to latch, to obtain a S/ADL command
#SB/S Intermediate signal to latch, to obtain a SB/S command
BRKS Output X22 from decoder. Used to obtain the STKOP signal and also goes to the interrupt circuitry
RTI/S Output X26 from decoder. Used to obtain STKOP and NOADL signals

The TXs (X13) signal is used within this circuit and does not go outside.

70




The intermediate signals from the register control circuitry go to the input of the control com-
mand latches:

Register control commands:

Command Description

X/sB Place the value of register X on the SB bus

/5B Place the value of register Y on the SB bus

SB/X Place the SB bus value on the X register

SB/Y Place the SB bus value on the Y register

/5B Place the value of register S on the SB bus

S/ADL Place the value of register S on the ADL bus

SB/S Place the SB bus value on the S register

s Refresh the value of the S register. The S/ control command is obtained by a complement of the SB/S signal
(active when the SB/S command is inactive)

71



STOR

#r/3B

DLATCH

_DO—D—@WSE

STOR r

]

ysb_latsh

Y

{smr

@SEXY

OLATCH
szb_lateh
OLATCH
D12
#3158
D13 L —D——D_Q:Jstsa
ixt zsb_latch
OLATCH
D14t
#oEK _DO_D_®SEM
p1afa ’
stoc_latoh
D16[xt
#5/5B e
D17[t I
OLATCH
o18fu
Aok _DO—D—@SEN
p1af ’
shy_latoh
D20Jx1 OLATCH
D21 [ ® _#EEIS _DO—D—@SEtS

JSR2
D4t o

DLATCH

nready_lateh

she_latoh
DLATCH

]

] o

lready

5TK2

{)aTioP

STKOP ==_latch
DLATCH
#3IADL
{= {0l
zadl_latch

D35]x

72



Optimized Schematics

STOR
HEATXSTY @
HL2TIND_Y 1
H1:3T2.ABSY 2 #v/s8
L:4:TO.DEY_INY 3 .
HLSTTYA 4 + <D7'
HL6TO.CPY_INY 5 <D7 I .
HLBT2ANY X 6 :D 4D7
TS 7 | D e D v
WLABT2X_IND 8 I> t D— ST sTXY
H1:44:T_TXA 8 t :
H142:TB.DEX 18 ,X/SB :D -
H1ABTO.CPX_INK 11 xebplateh
HL4TXSTX 12
HHSTRTXS 13 + L s/s8
H1:A6TATAX_LDX_TSX 14 I
WHZTLDEX 15 297 .<>7 Hse/x
wBTLIN 16 S D s
S TRTSX 17 @ sexe saxy
H1:28:TLDEY_INY 18 L
wl21:Te_LOYL 18 297 .<>7 #sasy <D -
1:22:TB.LDY2_TAY 20 sbyplateh 1
@JSR 21 ¢ “SE/S
:26:T5INT - 22 ‘D D ‘D‘ oalTatch ‘D sB/S
1:27:T8_PSHA_PSHP 23 N o
2B TARTS 24 ;D 2 . &
1#1:28:T3.PULA_PULP 25 @ ws/s
1:30:TERTI 26 ‘D T :B* Criven | ‘D s/8
HLEIT2ISR 48 D | | steop
/ready
PHIL <D A

D s/
11:3%:T2.5TACK 35 sadl_Tatch
PHj

https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki_Deepl /6502/regs_control.md
26:https://github.com/emu-russia/breaks/blob/master/BreakingNESUWiki/imgstore/logisim/regs_control_logisim.jpg

73



Notes in the margins for future revisions of the book.

74



ALU Control

The ALU control is designed to generate ALU control commands.

Intermediate Signals

/ROR SR AND CSET

75




Table of auxiliary and intermediate signals, which are found further in the schematics:

Signal Description
JROR Intermediate signal, used in the ADD/SBY circuit

SR Intermediate signal

AND Intermediate signal

0 Comes from the cycle counter of short instructions

s Comes from the cycle counter of long instructions

/c.out Flag C value (inverted value)

CSET Intermediate signal (“Carry Set"), used in the main ALU control circuit

sTK2 Decoder X35

RET Decoder X47

SBCO Decoder X51

ISR2 Decoder X48

/BR3 Decoder X93 (inverted value). The inversion circuit was lost somewhere in the optimization process.
BRK6E Comes from the interrupts processing circuit

sTKOP Comes from register control circuitry

Jready Global internal processor readiness signal

INC_SB Intermediate signal (“Increment SB*), used in the main control circuitry as well as in the bus control circuitry
JSR/S Decoder X56

PGX Comes from the bus control circuitry

NOADL Comes from the bus control circuitry

BRFW Comes from the conditional branch logic

m Comes from the PC increment circuit (see dispatcher)

6 Comes from the cycle counter of long instructions

D_ouT Flag D value

cout Flag C value

76




ALU Control (Main Part)

The circuit is a mess of gates and 4 latches to generate the input carry for the ALU (control sig-
nal /ACIN).

@
@A
£
@
£
o
<]
5

# ADL/ADD
INC_SB

ISR/5

#ADD/SB06

2
ALU SETUP

77



BCD Correction Control

BCD correction is applied in the following cases:

e  |f the BCD mode is enabled with flag D and the current instruction SBC (control signal
DSATemp)

e [f the BCD mode is enabled with flag D and the current instruction ADC (control signal
DAATemp)

DSATemp

ADD/SB7

The attentive reader will notice that the processor has support for bit rotation instructions (ROL/
ROR). The additional processing associated with these instructions is just handled by this circuit.

phit

sAfa—p

ADD/SB7

78



ALU Control Commands

#NDB/ADD

[=]

DSATemp.

#A0D/5806
ADD/ADL

#4DD/s87

Command

Description

Setting the ALU input values

NDB/ADD Load inverse value from DB bus to the Bl latch
DB/ADD Load direct value from DB bus to the Bl latch
0/ADD Write 0 to the Al latch

SB/ADD Load a value from the SB bus to the Al latch
ADL/ADD Load a value from the ADL bus to the Bl latch

ALU operation commands

ANDS Logical AND operation (Al & BI)
EORS Logical XOR operation (Al * BI)
ORS Logical OR operation (Al | BI)
SRS Shift Right

SUMS Summation (Al + BI)

Control commands of the intermediate ALU result

ADD/SB06 Place the value of the ADD latch on the SB bus (bits 0-6)
ADD/SB7 Place the value of the ADD latch on the SB bus (bit 7)
ADD/ADL Place the ADD latch value on the ADL bus

Additional signals

/ACIN Input carry
/DAA Perform correction after addition
/DSA Perform correction after subtraction

79



pHit [ P

PHI2
erew[a} BrAn]
sreav[l
-
= _

[t
Eor
o2
I

sespD

o
Ly

v

#4DLADD

ouc

2200 1ston

spaca_tsten
St

II1L

) So—>—@nonkon
) Do—>—@oemn
[ Do——@umo

) Do—t>—@seron
[ Do—>—@uuwo

soim szt
‘e

@
@
@

.

soin s

A

#DD_SE7

#ADDISET

{re_our
B

e et

i)

3

im0 Tatoh

ERr |
o}
] _D— EORS
conpert | aoejare
Tt |
_D— ORS
i
s -
:D— 5RS
S
_D— SUNS.
g |
_D_ DAA

S N ) WP

oo
sc_out[

]

80

> OrovsoL
etz e
St | oren
psa
— [nc_sa)-@ne_se

B0



Optimized Schematics

sTkoP
WEITERTL 26 RTU/S
1:34:TO.ROR_RORA 27 RoR
1WAHTOEOR 29 iz
EBHTRIPH 30
ot a1 resss > ,
i pe e e
’d’ 'fd‘: = . E@— default: DB>ADDH
jefault to 'OR’ if not ready,
to prevent ADD :D #08/A00_|,
o o e S
2 8 x
BEE
o | we/ADD +0/ADD E}
WET2STACK e L o
3.5TACK ready
H1AZT4ISR_INT - BRK6E #saze00 |9 |
HABTARTT HADL/A0D shadd B SB/ADD
eHI2 g
TLAHTIX_IND #eoLseon[, %] N
\ . 1o o}
HIASTAIND_Y : ete T ADL/ADD
HHET2IND_Y 41
addres? acinTatcht
WAZTIABS XY 42 Righ Bate /\
HIABTXPULA_PULE 43 — PLAPLP P2+ B INC._5B
- e s finen2 o [T melen
e.se o [7] i [+
acinTatcha
HIB2TXRTLRTS 47 RET RTLRTS SP+ - I T = .
JsR2
branch taken h 1
/BRFH 1 page crossing++ o orsliatcn2
BRI + b o ors
:D BRX arslTatent
o acinlatchs
HB6TR.SBE 51 S8Ce E/MN
{To.ADC_SBC 52 <
7c_out —|>
. srsliacnz
™ — ADC,SBC,ROL. PHIL PHIZ o q SRS
inplt carry | | srafiatent
e ROR T
ROR | PHIL PHIZ
—‘| }’——D cseT suns1atcn2
158 TXROL_ROLA 63 :D /cour- ST e AE sums
116@iT3.IMP B4 NP indirect, pointer addr.tt fresdy— sready P00 o AR
efaults T
6 ISR/5 | R ADDSB? defzuity
aaslisicnz
) aND o o e
e Tatent
i IsR/5
5 sR 47 ADD/SB7
STKOP
S ) o . %M‘ aasspTaten
iRt 84 R19/5 6
HLSHT4 85 Pox | . ADD/SBOS
ADD_ADL.
NOADL - addsos Jraten
HL9ET3 86 b D
HLSGTORTLINT 87
) E] ADD/ADL.
. RTL/S I> ) adda[Tatch
oy /D_ouT —Dﬁ% ‘acn correction control dsallatch?
seco :' ) b 4 /080
asaTatent

PHIL

https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki_Deepl /6502/alu_control.md
28:https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/imgstore/logisim/alu_control_logisim.jpg

81



Notes in the margins for future revisions of the book.

82



Program Counter Control

The program counter (PC) control circuitry is designed to generate control commands to ex-
change the PC value and the internal buses ADL, ADH and DB.

Nearby is the PC increment circuit, which is discussed in another section on dispatcher.

Transistor circuit for obtaining intermediate signals:

8
ISR/5 =56

[
w
=
2
=
o
(5]
=
<
o
o
Q
=
o

1PGH/ADH

1peL/per
tpau/pan 1ADL/PCL

1PCH/PCH
1ADH/PCH

83



Output latches and control commands:
1PCH/PCH

pcL/pce IADL/PCL
1PCH/DB \PCH/ADH 1PCL/ADL
1ADH/PCH 1PCL/DB

Inputs:
signal Description
BRO Decoder X73. Additionally modified with the /PRDY signal
BR2 Decoder X80
BR3 Decoder X93
T0 Comes from the cycle counter of short instructions
ul Comes from the PC increment circuit (see dispatcher)
ABS/2 Decoder X83. Additionally modified with Push/Pull signal (X129)
RTS/S Decoder X84
JSR/5 Decoder X56
/ready Global internal processor readiness signal
Outputs:
signal Description
DL/PCH Ausxiliary output signal for DL/ADH bus control circuitry
PC/DB Ausxiliary output signal for the RW Control circuit that is part of the dispatcher

Control commands:

Command Description

ADH/PCH Load ADH bus value into the PCHS latch

PCH/PCH If ADH/PCH is not running, this command is executed (refresh PCH)
PCH/ADH Write the PCH register value to the ADH bus

PCH/DB Write the PCH register value to the DB bus

ADL/PCL Load the ADL bus value into the PCLS latch

PCL/PCL If ADL/PCL is not running, this command is executed (refresh PCL)
PCL/ADL Write the PCL register value to the ADL bus

PCL/DB Write the PCL register value to the DB bus

84




Logic

PHi [t
pHIz[x
oL
#POLIDB
¢ > @rcuos
s pel_db_tatoh1 pol_ab_tateh2
088 o T PCIDE B
D77l ’ #PCHIDB i Eesivs
78 - T - '
poh_db_tatohz
DBSW B8N {rcios
A OLATCH
D841 RTSH
0941 nready_lsteh ouarcH
98
095 ’ #PCLIADL
% > {DroLioL
o[ pol_adl_atoh
oL
Pushipul
o120 |
DUPCH
pen_sah_iateh
iready[xt BT
#ADLPCL PCLPCL
e T} D0
pol_pol_tateh
Br2fa—(er2] ouaTcH
I Do—>———(DaoLpeL
T
adl_pol_taten o
l .
™ b
{DourcH
erofx
ouarcH
#ADHIPCH 5 o> (DroHPCH

85

B

adh_peh_lateh
BLATCH

:DO—D—@PCHIPCH

poh_peh_latoh

{#PCHIPCH



Optimized Schematics

PHIZ  JSR,BRK,INT: PHIZ
rosy [ push PELPCH on stack
1:62:T5.ISR_ 56 JSR/5 pedbclech?  poy pp
BRe 1 pcL/DB
w:80:T08R 73 P = —)-eorme pel_dETatcn2
WEBHT2INT 77 <D PCH_DBH J [ PCH_DB
a7 B 5
e BR2 pch_dB Tatch
B7T2ER 60 . PCL_ADL pc/0B
83 {
WLSATERTS B4 RTS/S
. . PCL/ADL
11:403:T3.8R 93 j} .<>,
04 Tx_RTIINT 84 :D
IL05TX.ISR 95 B 4 0 PCH/ADH
1:106:Tx_JHP_ 96 BRo :B;:D PCH/ADH
PHIL BR3
136 TxPSH_PUL_ 128 D 4D7 1 foL/eeL
T To 07 DL_PCH |
. D o PCL/PCL
Zenssaa, ) O #ADL/PCL
. DL/PCH
j) _wpcLspcL
| B
| RTS/5 ADH/PCH
1H1:82:T2.ANY_ABS
) PeH/PCH
: ADH>PCHA pen_pehTatn +
RTS/S T4t t H#PCH/PCH

BRI o< _ PCH>PCHH
PHIL ‘> JPHIL

https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki_Deepl/6582/pc_control.md
23:https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/imgstore/logisim/pc_control_logisim.jpg

86



Notes in the margins for future revisions of the book.

87



Bus Control

ADL/ABL

NOADL
SB/DB/, - /IND
ADH/ABH ' | SB/A

B/ADH =~ DL/DB

" ¥

Bus control is most of all "scattered" around the processor surface. It is easiest to describe all the
bus control commands first, and then to look at the corresponding circuits individually.

Bus control commands:

Command

Description

External address bus control

ADH/ABH

Set the high 8 bits of the external address bus, in accordance with the value of the internal bus ADH

ADL/ABL

Set the low-order 8 bits of the external address bus, in accordance with the value of the internal bus ADL

ALU connection to SB, DB buses

AC/DB Place the AC value on the DB bus
SB/AC Place the value from the SB bus/BCD correction circuit into the accumulator
AC/SB Place the AC value on the SB bus

Control of the SB, DB and ADH internal buses

SB/DB Connect the SB and DB buses
SB/ADH Connect SB and ADH buses
0/ADHO Forced to clear the ADH[0] bit
0/ADH17 Forced to clear the ADH[1-7] bits.

External data bus control

DL/ADL Write the DL value to the ADL bus
DL/ADH Write the DL value to the ADH bus
DL/DB Exchange the value of the DL and the internal bus DB. The direction of the exchange depends on the operating mode of

the external data bus (read/write)

The motive of all the circuits is roughly as follows:

®  The control circuits get a lot of input from the decoder and other auxiliary signals

e  Allcircuits are mostly combinatorial (no triggers, just a mess of gates)

e The outputs from the control circuits go to the output latches of the commands to control
the lower part of the processor.

88




Auxiliary Signals

Circuits for obtaining auxiliary signals:

NOADL n IND JSXy

In the IND circuit the decoder output X90 is additionally modified by the Push/Pull signal (X129).

89




The other auxiliary and intermediate signals that can be found in the schematics in this section:

signal Description
RTS/5 Decoder X84
RTI/S Decoder X26
STXY Comes from register control circuitry
BRO Decoder X73. Additionally modified with the /PRDY signal
5 Comes from the cycle counter of long instructions
6 Comes from the cycle counter of long instructions
PGX Output signal from ADL/ABL circuit
JSR/S5 Decoder X56
T2 Decoder X28
IPCH/PCH Comes from the PC control circuitry
SBA The signal comes out of the #SB/ADH circuit, used in the #ADH/ABH circuit
Jready Global internal processor readiness signal
BR3 Decoder X93
0/ADLO Comes from the interrupt vector setting circuit
AND Comes from the ALU control circuit
STA Decoder X79
STOR Intermediate signal from the dispatcher
SBXY Comes from a register control circuit (not to be confused with STXY)
m Comes from the PC increment circuit (see dispatcher)
BR2 Decoder X80
ZTsT Output signal for flags control from SB/DB circuit
ACRL2 One of the ACR Latch outputs
0 Comes from the cycle counter of short instructions
ABS/2 Decoder X83. Additionally modified with Push/Pull signal (X129)
IMP/4 Decoder X101
IMPL Decoder X128. Additionally modified with Push/Pull (X129) and IR0 signals.
JSR2 Decoder X48
/ISR Inversion of JSR2 for the register control circuit
BRK6E Comes from the interrupts processing circuit
INC_SB Comes from the ALU control circuit
DL/PCH Comes from the PC control circuitry

The signals are arranged in the order they appear in the schematics.

90



External Address Bus Control

Circuits for the generation of intermediate signals:

#ADL/ABL #ADH/ABH (1) #ADH/ABH (2)

ADH/ABH

1PCH/PCH

#ADH/ABH

SBA
0/ADLO

ADL/ABL

The first piece of the #ADH/ABH circuit is to the right of flag B, the second piece is in the inter-

rupt address generation circuitry. The #ADH/ABH signal connects directly between these two
pieces.

The output latches of the ADL/ABL and ADH/ABH control commands:

#Y/SB
#ADL/ABL

91



ALU Connection to SB, DB

Circuits for the generation of intermediate signals:

#AC/DB #SB/AC, #AC/SB

/10 /10 /10 /10 /10 /70 /1O /1O

Fast Fast ast

AC/DB, SB/AC, AC/SB control command output latches:

#AC/SB 4AC/DB

92




SB, DB, ADH Control

Circuits for generating intermediate signals (for 0/ADHO you get the control command at once):

#SB/DB (also #0/ADH17) 0/ADHO #SB/ADH

#SB/ADH

SB/DB, SB/ADH, 0/ADH17 control command output latches:

#SB/ADH

(0/ADHO above)

93



External Data Bus Control

Circuits for the generation of intermediate signals:

#DL/ADL #DL/DB (1) #DL/DB (2)

The first piece of #DL/DB circuitry is next to the ACR Latch, the second piece is right inside the ALU control
circuitry. The #DL/DB signal connects directly between these two pieces.

DL/ADL, DL/ADH, DL/DB control command output latches:

5 m

94



@0
{DoioHo

PHI2[a
puaTcH
sexvfu
'_D_’._ #DLADL 1
D55 [x1 _—
2_adho_lateh
DLATEH
ﬂ——b—@nh’mm?
#DUADL] =_adh17_tateh
oLaTcH
#SBIAC #SBIAC

#ZTST

-

sb_ac_lath

e e L

#ADLIABL

#ACISE

DLATCH

B

adi_abl_latch
OLATCH

D88 [x1

AND 1

#SBIDB

-

a0_sb_latoh

P @z‘rsT
————>———(DsoumeL
So—>———(Dacise

{Dsene

o

sb_db_latoh

DLATCH

i

ac_db_lateh

»—‘D—Q )ACIDE

{Drox

D81 [ #DLADL
’ ouaTcH
pazfx
’ 1 ¢ > {DseiroH
sb_adh_lateh
oLaTCH
1 Ir > {DoLROH
di_adh_lateh
oLATCH
#DLIADL
1 ¢ > {DoLsoL
di_adl_iatoh
0i4DLO [t
BRr2[x
SBA
ACRL2
pLaTcH
DUPCH |t FDUPCH
’ g > {Drornen
BR3[x BR3 adh_abh_ateh
nready_latoh
sready[t
ouaTcH
$ > {DoLoe
A_db_ateh

JSXY

JMP/4

D101 1

#PCHIPCH [
7oKl
K]
ol K]
7ol K]

JSRI5

D56 [x1

95




Optimized Schematics

1SB>X, ¥
X.ROLx_ASLx_

sBXY.

PHIZ

DL_ADL.
2_adn@ Tatch

D

0/ADHE

page@, pagel
elect

- 0/DHL7
o.TvA_ 58
+11165:T1.AND_EOR_OR_ADC 59 ’j T6
tH1z66:T1ADC_SBC 68 I {> o s8/AC AND ot
11:67:T1.ASLA_ROXA_LSRA 61 s_Ac skt
e z1sT SB_
HseBTTXA. 62
TopLA 63 e
To.LDA 64
:D7 AC/SB
Wi7LTesL 65
72T TAY 66
1s73T.ASLA_ROXA_LSRA 67 {
To.TAX 68 ) #AC/SB 08
458/08
D Ac/08
M77THABS_X_Y 71 44@ @
WZETEINDY 72
- PeX
1BBTEBR 73 L 1 pex
e YLD »
HEBETXSTA 79 878 ) Y708 SB/ADH o
sTOR sBXY
sB_AC
e DA 17 L R
a1_agnTTatcn 5
¢ |
HLBBIT2ANY_ZP B DL_ADL. DL/ADL —
HISLTZANY_IND 62 a1_saatcn o
HL9ATERTS 84 BRK,INT
UVECTOR dj‘_ﬂf
5X_IND 68 JECToR . -
e 1 :D acn_sbh Tatcn asb/oe
HIHOLT4INDY 91 ]
- 4-? Lo @
| =
128 g T6
ana—‘ > AND
111:436:Tx.PSH_PUL_ 129 “ gt I
] X
3
2 PHIL

:32:72 T2
INC_SB

WBGT4X_IND 45
BRKSE

WLBLTAIND.Y 46

i) ooe

WIEZTXRTIRTS 47

5
BR2
205 48 %2 IsXY
sTXY
M1%T4.IMP 101 JHp/4
#PCH/PCH
HL62TEISR. 56 JISR/B

zTsT

$B_0B

https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki_Deepl /6502/bus_control.md

7:https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/imgstore/logisim/bus_control_logisim.jpg

96



Notes in the margins for future revisions of the book.

97



Dispatcher

The execution logic (dispatcher) is the key mechanism of the processor that "directs" the execu-

tion of instructions.

The execution logic consists of the following circuits:
Intermediate signals

R/W pad control

ACR latch

Processor readiness control

Instruction completion circuit

Long instruction cycle counter (T2-T5) is discussed in the corresponding section.

Intermediate Signals

Short instruction cycle counter (TO-T1)
Cycle counter for very long instructions (RMW T6-T7)

Program counter (PC) increment circuit
Opcode fetch circuit (Fetch)

Intermediate signals are obtained from the decoder outputs without any regularity. It was very
difficult to separate them from the intermediate signals of the other control circuits, because of

the chaotic connections.

BR2 BR3, D91.92

/MemOP

STORE, STOR

/SHIFT

Branch T2

9
=

BR2

98




Processor Readiness

READY CONTROL

TRES1

The /ready is the global ready signal of the processor, derived from the RDY input signal which
comes from the corresponding contact.

R/W Control

=
Q
w
-
w
7]
4

®  REST: Reset cycle counters

®  WR: The processor is in write mode

99



Short Cycle Counter

JTWOCYCLE

CYCLE COUNTER 0-

e TO: Internal signal (processor in TO cycle)
e /T0, /T1X: Coming to decoder input

Very Long Cycle Counter

e T5,T6: The processor is in the RMW cycle T6/T7 (the signal names T5/T6 are old, but we will
not rename them anymore)

100


https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/6502/dispatch.md#%D1%81%D1%87%D0%B5%D1%82%D1%87%D0%B8%D0%BA-%D1%86%D0%B8%D0%BA%D0%BB%D0%BE%D0%B2-%D0%BE%D1%87%D0%B5%D0%BD%D1%8C-%D0%B4%D0%BB%D0%B8%D0%BD%D0%BD%D1%8B%D1%85-%D0%B8%D0%BD%D1%81%D1%8

Instruction Completion

ALU SETUP ™/

g
§
2

o
2
=
8
2
4

ENDX: Complete long instructions

&
w
7
w
[
[
il
=
2
2
(=]
o
w
=
5

TRES2: Reset extra instruction counter
TRESX: Reset Cycle Counters

101



ACR Latch

=
=,
<
-l
o
Q
b=

Outputs 2 internal intermediate signals: ACRL1 and ACRL2.

102



Increment PC

-
o
o
=
=
o
o
g
O
o
o
a.

The circuit contains 3 "branches" of combinatorial logic, which finally form the control command
to increment PC (#1/PC).

The circuit also generates the following signals:

®  T1:Processorin cycle T1

e  TRES1: Reset short instruction cycle counter

Opcode Fetch

®  FETCH: Fetch opcode to instruction register
e 0/IR: Inject BRK operation code, for interrupt handling

103



Logic

PHI1
[ P o G|

ACRL_FF

15_latoh

1_latoht

aor_lateh2

JSTORE

{DAcRL2

s

_tatont e
ousre
TRES2
wesz_tatoh
:DC {DRESX
-/M P
= ® {Dstor

trase_latohz

{DENDX_Debug

{DENDS_Debug

fetoh_latoh

ROY[xt

DLATCH

;

Doir
{@retcH

8_ourfHe_ouT]
srrwfa HERFW]
IBRTAKEN]

Hi1 -
Do b

ready_latoht

RDY_FF

ands_latohz
DLATCH

{Drreaty

nrzady_lateh

oLaTcH

step_latohz

pLaTCH

_lateh

L___§
tdydelay_lateht

TRES1

rdydelay_lateh2 I

{DwRr

TWOCYCLE [yt

comp_latoht
oLdicH

MMPLIED [t >

DLATCH

tx_latoh
pLaTCH

bi_latoht

pe_latoht
DUAT

ipo_lateh2
DUATC

ipe_latehd

104




Optimized Schematics

s Notmesdpnis b2 o
fie I . T
g - Pz
page crossing
S oo D D d [
caress cateutation
D ELps
4 ou1s
8 I Sadress catculation .
57 X
Iready Rt read cucte ——> s modidy cucle —> R urite cycle
| s =1 tells the sequencer,
That e had il cycien
o 42 |for he current insirvetiony
priz D L]
cycle is not Jou Byte g8
{sbaress calcustion Ry
werTantnt F*
sready Pz TRESX
> aese
“ D, D
s D wenox o 7 weniven
J z
wiszT2eR  sa 2 It SHIET D D 1 N
TNy 81 D prkeE BRGIT dast cuc
wnozTanes XY 82 1e of addr. calc. except @
155t Cile of At
s o 4 135 SUEls o Sy ssa s, push punt aov.er
155t Cucle of branch el J7data bus read valia
o s 3
I L s w3 ¢ )
T D F1 mz S o
HET D™ "
s 3
WHAZT2PSHAPSHD 160 . LR I L — sresdy
e 1ot D f resaiiaent
wssTEATL TS 102 ™ i) data from e previous
wasersisn 102 55 | | 0 s e 3 e read cicle et valid 7
Cttoragto a5 101 ] o s L1 Ds e |
_pup 05 oF active RES sequence g £
iTROLx_ASLx 107 o2 D . o caelarine | &
WH26TIZP X 111 pushing PC on stack | | 507 1 |> £
ieacp Irescy P
wseTIees 122 readys 1
A (u:les Yor tne
WARTARBS X Y. 125 w conrol
JBRTAKEN ¢ not reath step_Fr
Keop he currant state of T1. vese
i°T2, a1 cucles for the e
Currant Insiruction are done. > Iﬁ! 5) FereH
i RES, do nothing. o/
TRESy "
pHIZ - ® B n lour
> ] &7 ar iscn
wh0L/PCLY branch uith pHiz D .
page crossin
o2 SRt 7 sa prIL 788,71 sequencer
(r?nran:n Cikery 08 block pes+ sremiment, o 3 ~
o T2branch MO BCLOPELY g g Iresay D T Jrix
D v D { To_FF
3 t o LR
i o a T
T .
H Pz orev, cucle AN
>\ v Dl e 2N L Cpg T
e D D
reacy and T3 rancn
(i bage’ drosin T o e
P ° e don't increnent P ’
oot giring 7THOCTCLE -
, weuen sequence . necveL ar /s
pLIED ¥ B M RN .
gon't increment PC Zié';"‘”:‘h".fiii“@fme in paratlel
fn"tne Sacond cucle o S .
o a1 Bte instuction
e P —
/muocyeLe

https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki_Deepl/6502/dispatch.md
13

105

ttps://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/ingstore/logisim/dispatcher logisim.jpg



Notes in the margins for future revisions of the book.

106



Flags Control

The flag control circuits are divided into two parts for convenience:

e Intermediate control signals from the decoder (opcode selection)
®  Flag control signals

As you can guess, the purpose of the circuit is to control processor flags, depending on the cur-
rently executed instruction.

| think it makes sense to show here the relevant part of the wonderful 6502 circuit made by Don-
ald F. Hanson:

ACR
Ts_l AVR
ogo/c— "—"CC
e 062
DB/ Z— z
°‘”2’ 1 | PROCESSOR| @
082/1— STATUS
|
57— | REGISTER :
w0 | ® |
S
B
oV
DBE/V— =
AVR/N— V
IN—>1 o dep/0B
DBYN—= N

(The missing 0/V signal has been corrected in the schematic)

107



Opcode Selection

/10 /10

Jrax my max rax

Input signals:

®  /TO: Processor executes cycle TO of the current instruction
®  /T1X: Processor executes T1 cycle of the current instruction
e  T6: Processor executes T6 cycle of current instruction

Output signals:
signal Decoder outputs Dedicated instructions
1POUT 98,99 Working with flags outward (saving context after interrupt, PP instruction)
/csl 108 Instructions CLI, SET
BIT1 109 Instruction BIT, cycle T1
X110 110 The 110th de‘cod‘er output (instructions CLC, SEC), for convenience is left in these circuits. It just goes on to the main
flag control circuitry.
AVRV 12 Instructions ADC, SBC. This signal is the control signal for flag V'
/ARIT 107,112,116-119 Matrix of comparison (CMP, CPX, CPY) and shift instructions (As1, ROL) where flags are used
BITO 113 Instruction BIT, cycle TO
PIN 114,115 Working with flags inside (context loading after RTT, instruction PLP)
/CSD 120 Instructions CLD, SED
[«R% 127 Instruction cLV

All of these control signals (except AVR/V) are intermediate signals and are not used anywhere
else except for the flag control circuitry.

108



Flags Control

BT1. P/DB

Signal Purpose

/sl see above

X110 see above

POUT see above

BIT1 see above

zTsT Comes from SB/DB bus control circuitry
/ARIT see above

SR Shift instruction from ALU control logic
Jready Global internal processor readiness signal
PIN see above

BITO see above

/CSD see above

v see above

109

1R5/D

FLAGS CONTROL




Output Flag control signals:

Signal Flag Purpose

IR5/C c Change the value of the flag according to the IRS bit
ACR/C c Change the value of the flag according to the ACR value
DB/C c Change the value of the flag according to DBO bit
DBZ/Z z Change the value of the flag according to the /DBZ value
IR5/1 1 Change the value of the flag according to the IRS bit
IRS/D D Change the value of the flag according to the RS bit
DB/V v Change the value of the flag according to DB bit

o v Clear flag V

DB/N N Change the value of the flag according to DB bit

P/DB Al Place the value of the flags register P on the DB bus
DB/P Al Place the DB bus value on the flag register P

The control signal 1 /v is obtained by the input contact SO and is not shown here.

Logic

PHIZ |1 r

rios

pdb_lateh
DLATCH

i & LIRS

iri_lateh
DLATCH

D110

1 @ {DRsic

irc_lath
OLATCH

D120t > {DRsD

ird_lath
DLATCH

[

127t > 1 Do

2v_lateh
DLATCH

#RIT
1 ¢ {Dncric

acro_latch

DLATCH

ZTST

i

b———(Doezz

dbz_lateh

DLATCH DBIN

BIT1 BIT1

B

D109 1

dbn_lateh
i ——@oer
iready|x1 —DO—

DLATCH

srfa
- {Doeic
dbe_latch

DLATCH
D114t ' JPIN

D151 ;Sk_lract:h

]

|

BITO .
>

D113t

bit_latch

110



Optimized Schematics

PHIZ

WLLLeTAINT S8 D pout .
H11:T2PSHP 89 pdbTatch
w2z TaclsE 108 -
irilTatcn
g
1:425:T0.CLC_SEC 110 3 wsc | @
irclTatch .
N
was7Tacto_sED 120 Fd w3
irdlTatch 3
Ty 127 o
s ZTatcn
1124 TxROLX_ASLx 107
1:427:TLADC_SBC_ 112 AUR/Y :B, ARIT . acrrc] § 5
1MLA31:TLCHP 116 acrelatch 7;7
3
[
J; oez/z | 8
11:434:T1.CPX2.CPY2 119 dbz[Tatch [ 3]
218t 4D7<D* oe/N | 8 .
oy
coutd be nl
WIA24:TLBIT 108 ! I> il 233
amalTatch BT
N

<D7 0B/Y

1:428:TO.BIT_ 143

S Tatch 2
§
HA3TARTL 115 AD L] . g
WLA2STOPULD 114 L D e oy
/ready D <
a

R os/C

https: //qlthub com/emu- |'uss1a/hreaks/blob/master/BreaklnqNESUlk _Deepl /6582/flags_control.md
16:https://github.com/emu-russia/breaks/blob/master /BreakingNESWiki/imgstore/logisim/flags_control_logisim.jpg

111



Notes in the margins for future revisions of the book.

112



Flags

The flags (bits of the P register) are in "scattered" form, as several circuits of the upper part of
the processor.

The flags are controlled by the flags control circuit.

Flag B is treated separately in the section on interrupt handling. Topologically it is also located in
another part of the processor.

C Flag

e  |R5/C: Change the flag value according to the IR5 bit (applies during execution of the SEC
and CLC instructions)

ACR/C: Change the flag value according to the ACR value

DB/C: Change the value of the flag according to the bit DBO

/IR5: Inverted IR5 value

/DBO: Input value from DB bus, in inverted form

ACR: Result of a carry from the ALU (/ACR: in inverted form for dispatcher)
/C_OUT: Output value of flag C, in inverted form

113



Change the flag value according to the IR5 bit (applied during execution of SED and CLD
instructions)

DB/P: Common control signal, place the DB bus value on the flag register P
/IR5: IR5 bit value, in inverted form

/DB3: Input value from the DB bus, in inverted form

/D_OUT: Output value of flag D, in inverted form

I Flag

IR5/I: Change the flag value according to the IR5 bit (applied during execution of SET and
CLI instructions)

DB/P: Common control signal, place the DB bus value on the flag register P
/IR5: IR5 bit value, in inverted form
/DB2: Input value from the DB bus, in inverted form

/I_OUT: Output value of flag |, in inverted form. This signal goes to two places: to the inter-
rupt processing circuit and to the circuit for exchanging flag register values with the DB bus
(below).

114


https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/6502/flags.md#%D1%84%D0%BB%D0%B0%D0%B3-i
https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/6502/flags.md#%D1%84%D0%BB%D0%B0%D0%B3-i

The /1_ouUT signal is further modified by the BRK6E signal in flag B circuitry:

N Flag

DB/N: Change the flag value according to DB7
/DB7: Input value from DB bus, in inverted form
/N_OUT: Output value of flag N, in inverted form

115



0/V: Clear flag V (applies during execution of CLV instructions)
1/V: Set flag V. Forced flag setting is done by the S0 pin.
AVR/V: Change the value of the flag according to the AVR value
DB/V: Change the flag value according to DB6

AVR: Overflow result from the ALU

SO: Input value from pin sO

/DB6: Input value from DB bus, in inverted form

/V_OUT: Output value of flag V, in inverted form

Z Flag

DBZ/Z: Change the flag value according to the /DBZ value
DB/P: Common control signal, place the DB bus value on the flag P register

/DBZ: Control signal from the flag exchange circuit with the DB bus (check that all bits of
the DB bus are 0)

/DB1: Input value from the DB bus, in inverted form
/Z_OUT: Output value of flag Z, in inverted form

116


https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/6502/flags.md#%D1%84%D0%BB%D0%B0%D0%B3-z

Flags 1/0

FEAGS IN/OUT

e  C_OUT: Flag C value in direct form, used in ALU control circuit (in the circuit to form the
ADD/SB7 signal)

(] D_OUT: Flag D value in direct form, used in the ALU control circuit (to form BCD correction
signals DAA/DSA)

e  P/DB: Place the P flag register value on the DB bus

e  /DBO0-7: The value of the DB bus bits, in inverted form. It is fed to the input of the corre-
sponding bits of the P register.

e  /DBZ: Check that all DB bus bits are 0 (i.e. checking the value to 0). It is used by the Z flag.

Correspondence of the bits of the DB bus and the flag register P:

DB Bit Flag

0 c

1 z

2 1

3 D

4 B

5

6 v

7 N

Flag 5 is not used. The DB5 bit is not changed (not connected) when saving the register P to the
DB bus. However, the value of the DB5 bit is checked by the /DBzZ control signal (to compare the
value on the DB bus with zero).

117



Logic

PDB|x1

B_OUT|x1

1DB1

DBOJx1

ZFLAG

DLATCH

=1
@

=1
@

11 -
| izour
g

2_latoh1

=1
@

DLATCH

z_latoh2

08P ]

NFLAG

DLATCH

PHUS IN_OUT

=1
@

=]
@

0666644

=1
@

. g
n_latoht

DLATCH

!

iz_OUT

{Dic_out

{io_out
{Dn_out

n_lator2
o
Rs1c O
CFLAG
acr[x oLscH (@ our
in-f
fc_out
(g
e_tatohd
DBIC |x1
ACRIC
acricfa
o_tatoh2 —Dnour
IRS/D |1 DFLAG
ouarch
-
D_OUT
L4
PHI |1 d_lateh1

st re]

IRSAx1

IFLAG
9

i_lateht
& 1_OUT]

i_latoh2
AR VFLAG
DLATCH
¥
DBNV [t _OUT
L____§
_latoh1 I
D123
avi_latoh DLATCH

o}

s0_latoh1

vsat_latoh




Optimized Schematics

Flags

falling edge detector

PHI2 E

sa_latcha

AL

so_latch2

PHIL PHIL

PHIL ||
PHIZ |

S0
SO_EDGE

Z FLAG

—D

[y P—
{> /082

oa/p j}
e D /081,

PHI2

2_Tawch2

2_latcht.

| sz_out

PHIL

/0B

sc_out > E -
/2_0uT D E -

w0t e Lo

N FLAG

PHI2

D FLAG

/1001

last cycle of BRK/int sets 1 Flag

U FLAG i flag is oot modit

ied
oor by uriti
2 Bing e o T8 U 508 o |

pHiz
N
so.eoce -
N
wseltaen [ L)
|
d
8 o
o e 1
g awTatch
s S
3
2 (o
g
)
o | oas

v_lateh

PHIL

|
aer s

v mmz

* L uour

/0_ouT {>{ E oea
T T

7u_out

D> 3

o8

sc_out
X
/1_out
/0_out
nu_out
M _out

https: //qnhub com/emu—| russm/breaks/blob/master/BreakquESulkl Deepl /6502/flags.md
15:https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/imgstore/logisim/flags_logisim.jpg

119



Notes in the margins for future revisions of the book.

120



Branch Logic

The logic of conditional branches determines:

o  Whether the branch went forward or backward
®  Whether a branch occurred at all

The branch direction is determined by the 7th bit of the branch instruction operand (relative
offset) which is stored on the internal data bus (DB). If the 7th bit is 1, it means that branch is
made "backwards" (PC = PC - offset).

The branch is checked according to the branch instruction (which differs by 6 and 7 bit of the
operation code) as well as the flags: C, V, N, Z.

Branch Forward

The BRFW trigger is updated with the value D7 during BR3.PHI1. The rest of the time the trigger
stores its current value. The value of the trigger is output as a BREW control signal to the Pro-
gram Counter (PC) control circuit.

The BR2 is the X80 output of the decoder.

121


https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/imgstore/branch_forward_tran.jpg

Branch Taken

The combinatorial logic first selects by IR6/IR7 which group the branch instruction belongs to
(i.e. which flag it checks) and the subsequent XOR selects how the branch instruction is triggered
(flag set/reset). The output of /BRTAKEN is in inverse logic, that is, if branch is triggered, then /
BRTAKEN = 0. The consumer of the /BRTAKEN signal is also the PC control circuit.

Inputs /IR6 and /IR7 are decoder outputs X121 and X126 respectively. The /IR5 input comes
directly from the instruction register.

Note: The Branch Taken logic operates continuously and the value of the /BRTAKEN control line
is updated every cycle, regardless of which instruction is being processed by the processor at the
time.

Logic

R8s
o121 fr———

IR7
A L

e_ouTha

M_OUT|x1

D—@fﬁ RTAKEN

N_OUTh

PHIT[x1

pHi2 o ——

DBT|x1

Y

pLATEH

er2fu ———

br2_latoh
DLATEH

BRFW_FF

bro_latchz
—po—(Derri

122



Optimized Schematics

/7 D126
/IR D121

e
/BRTAKEN

I> R g
.
D> Eo
+ 07,6510 z

1 briu_latchi
S D
. BRFU_FF ote

\VAVAR ) e
T ]
Wy szour T/

yoe 28 HuX

https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki_Deepl /6502/branch_logic.md
é:https://github.com/emu-russia/breaks/blob/master /BreakingNESWiki/imgstore/logisim/branch_logic_logisim.jpg

123



Notes in the margins for future revisions of the book.

124



Control Commands

"Control Commands" is the conventional name for the large number of control signals that go
from the top of the processor to the bottom and control the context (registers, buses, and ALU).

#Y/5B
HADL/ABL

125



tPCi/PCL 1ADL/PCL
IPCH/DB 1PCH, /%" IPCL/ADL

1PCL/DB

The control commands for the flag register are discussed in the corresponding section on flag
management, since they do not go beyond the top of the processor.

Each control signal usually contains an output latch and sometimes a special "cutoff" transistor

that turns the signal off at a certain half-cycle (usually some of the signals are turned off during
PHI2). This is because the internal buses are pre-charged during PHI2, and the registers are usu-
ally "refreshed" at that time.

Most signals have names like 2/B which means that the line "connects" a to B. For example SB/X
means that the value from the internal bus SB is placed in register X.

126


https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/imgstore/6502_controls_tran3.jpg
https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/imgstore/6502_controls_tran4.jpg

List

All commands are discussed in more detail in their respective sections. The summary table is just
for reference.

Name PHI1 PHI2 Description
Register control commands
Y/SB N Y=>SB
SB/Y N SB=>Y
X/SB v X=>SB
SB/X v SB=>X
S/ADL v v S =>ADL
S/SB. v v S=>SB
SB/S. v SB=>S
/s v The S/S command is active if the SB/S command is inactive. This command simply “refreshes” the
current state of the S register.
ALU control commands
NDB/ADD v ~DB =>BI
DB/ADD v DB => Bl
0/ADD N 0=>Al
SB/ADD v SB=> Al
ADL/ADD v ADL => BI
JACIN v v ALU input carry. The ALU also returns the result of carry (ACR) and overflow (AVR)
ANDS v v Al & Bl
EORS v v Al A BI
ORS v v Al
SRS N v >>=1
SUMS v v Al +BI
/DAA N v 0: Perform BCD correction after addition
/DSA v v 0: Perform BCD correction after subtraction
ADD/SB7 N v ADD[7] => SB[7]. Be careful, all output values are inverse latch values, except for ADD/SB7.
ADD/SB06 N v ADDI0-6] => SB[0-6]
ADD/ADL v v ADD => ADL
SB/AC N SB => AC
AC/SB v AC=>SB
AC/DB N AC => DB

127




Program counter (PC) control

commands

#1/PC v v 0: Increment the program counter

ADH/PCH v ADH => PCH

PCH/PCH v If ADH/PCH is not performed, this command is performed (refresh PCH)
PCH/ADH v v PCH => ADH

PCH/DB v v PCH => DB

ADL/PCL v ADL => PCL

PCL/PCL v If ADL/PCL is not performed, this command is performed (refresh PCL)
PCL/ADL v v PCL => ADL

PCL/DB v v PCL=> DB

Bus control commands

ADH/ABH N v ADH => ABH

ADL/ABL N v ADL => ABL

0/ADLO, 0/ADL1, 0/ADL2 v v Reset some of the ADL bus bits. Used to set the interrupt vector.
0/ADHO, 0/ADH17 N v Reset some of the ADH bus bits

SB/DB N v SB <=> DB, connect the two buses

SB/ADH N v SB <=> ADH

DL latch control commands

DL/ADL N v DL => ADL
DL/ADH N v DL => ADH
DL/DB N v DL <=> DB

"Other" PHI2 (/PHI1)

On the left side is a small circuit to pull up PHI2 (which is used by a lot of cutoff transistors, so it
must be quite powerful):

128



https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/imgstore/phi2_pullup_tran.jpg

Optimized logic diagram with explanations:

note:
N
iy o
A=
:
\ \ /58

https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki_Deepl /6502/context_control.md
:context_control_gating

Command Priority

Although in a real processor all commands are "executed" at the same time, it is still possible to
outline some priority that the developers have laid down.

The commands on the bottom of the 6502, in order of execution:

PHI1 "Set Address and R/W Mode":

Loading on the bus from DL: DL_DB, DL_ADL, DL_ADH

Registers to the SB bus: Y_SB, X_SB, S_SB

Saving flags on the DB bus: P_DB

ADD saving on SB/ADL: ADD_SB7, ADD_SB06, ADD_ADL

Saving AC: AC_SB, AC_DB

Saving of old stack pointer value to ADL bus: S_ADL

Increment PC: n_1PC

Saving PC to bus: PCL_ADL, PCH_ADH, PCL_DB, PCH_DB

Bus multiplexing: SB_DB, SB_ADH

Constant generator: Z_ADLO, Z_ADL1, Z_ADL2, Z_ADHO, Z_ADH17

Loading ALU operands: NDB_ADD, DB_ADD, Z_ADD, SB_ADD, ADL_ADD
BCD correction via SB bus: SB_AC

Loading flags: DB_P, DBZ_Z, DB_N, IR5_C, DB_C, IR5_D, IR5_|, DB_V, Z_V, ACR_C, AVR_V
Loading registers: SB_X, SB_Y, SB_.S/S_S

Load PC from bus or keep old value: ADH_PCH/PCH_PCH, ADL_PCL/PCL_PCL
Saving DB to DOR

Set external bus address: ADH_ABH, ADL_ABL

129



PHI2 "Read/Write Data":

° Loading the DL with a value from the external data bus

o Registers on SB bus: S_SB

° Saving flags to the DB bus: P_DB

[ ALU operation: ANDS, EORS, ORS, SRS, SUMS, n_ACIN, n_DAA, n_DSA
° ADD saving on SB/ADL: ADD_SB7, ADD_SB06, ADD_ADL

o Saving old stack pointer value to ADL bus: S_ADL

L] Increment PC: n_1PC (PC is incremented in this half-cycle)

° Saving PC to bus: PCL_ADL, PCH_ADH, PCL_DB, PCH_DB

° Bus multiplexing: SB_DB, SB_ADH

L] Constant generator: Z_ADLO, Z_ADL1, Z_ADL2, Z_ADHO, Z_ADH17

o Loading flags: DB_P, DBZ_Z, DB_N, IR5_C, DB_C, IR5_D, IR5_|, DB_V, Z_V, ACR_C, AVR_V

° Setting external data bus from DOR: If WR = 1

130



BOTTOM PART

131



Address Bus

Although the 6502 communicates with the outside world on a 16-bit address bus, but because
the processor is 8-bit in nature, the address bus is internally divided into two 8-bit halves: an
upper (ADH) and a lower (ADL).

The internal ADH/ADL address bus connects to the external 16-bit bus (pins A0-A15) through
registers ABH/ABL, which contain the last written value (address that has been set).

The address bus is unidirectional. It can only be controlled by the 6502.

Transistor circuit of the lower bits of the ABL (0-2):

(The schematic is the same for ABL1 and ABL2 bits)

The remaining ABL bits (3-7):

132



ABH bits:

: |

ADH/ABH

2

Control commands:

e  0/ADLO, 0/ADL1, 0/ADL2: The lower 3 bits of the ADL bus can be forced to zero by com-
mands when setting interrupts vector

e  ADL/ABL: Place the value of the internal ADL bus on the ABL register
®  ADH/ABH: Place the ADH internal bus value on the ABH register

133



Circuit Flow
Consider the behavior of the circuit when ADL = 0:
DLatch

2
1

not4 1 ‘ not2

[1]

e The flip/flop of the ABL bit is organized on two inverters (not2 and not3) with not2 acting
simultaneously as a DLatch (whose input Enable is connected to PHI2)

®  PHI2: FF is "refreshed" in this half-step.
e PHIT: In this half-step the old FF value is "cut off" by the PHI2 tristate (located to the left of

not2) and the new FF value is loaded from the ADL bus (inverted, see not1) but only if an
ADL/ABL command is active

e The output from not2 organizes the final generation of the output value for the external
address bus. This part of the circuit contains an inverter not3 to form the FF and also an
inverter not4 which controls the amplifier "comb"” of the Ax contacts

Logic

On the logic circuits PHI2 is not used, and FF organized on two inverters is replaced by a regular
trigger.

P [@] pHi [@]
pHiz[@]not used P [@notused

AoussL[@}

134



Optimized Schematics

driver

1 pan

PHIL

S e B B

inverter

driver

=
t

AL

R
@
0

a/A0L0 1

©

inverter

oL e
lotch
) p:y e
coLa . [> [ |> o
R
asmote
"

https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki_Deepl/6502/address_bus.md
@:https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/imgstore/abl@2_tran.jpg

1

135


https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/imgstore/6502/ttlworks/0_abl02_tran.png

Notes in the margins for future revisions of the book.

136



Data Bus

The circuits for working with the external data bus consist of 8 identical pieces:

(The circuit is shown for bit 0, the rest are the same)

e DOR: The DOR latch stores the output value to be placed on the DO-D7 bus pins. If RD=1
the complementary output lines with DOR are cut off, so the whole output part becomes
floating.

e  DL: The DL latch stores the input value

®  Next to the control signal DL/DB you can see the precharge transistor for the internal bus
DB

Control signals:

e  DL/ADL: Place the DL latch value on the internal ADL bus
o  DL/ADH: Place the DL latch value on the internal ADH bus

e  DL/DB: In read mode (RD=1), the value from the DL latch is placed on the internal DB bus.
In write mode (RD=0) the value from the DB bus is placed on the DOR latch

The external data bus (pins DO-D7) is also directly connected to the input of the predecode cir-
cuit.

137



Optimized schematics:

‘ © am;%_) ‘
-

Data Latch OL/ADL 5 1 $ 7]
& 2 pAD
- Al
8 pHi2
T R
§
5 oL/ADH £ R N
§ H gl °
FEN N g B
H {— oo 5 g
E H 1
il
PHIL
o6 a0
086
Data Latch OL/AOL
{—aoLo
oA
pHI2 oL/e0H E
g%psz
5
2
> b 1> F wo £
oLo8

PHIL
74125

RD

Data Latch OL/AoL
.
DL/ADH i~
2
—noHe
E|
AR

A
PHIL o

https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki_DeeplL/6502/data_bus.md
11:https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/imgstore/6502_data_bit_tran.jpg

138



WR Latch

From the R/W control circuit, the latch circuit receives a control signal WR. The circuit outputs a
control signal RD which controls the direction of the external data bus.

Optimized schematics:

inverter
o
inverter

inverter

PHI2

i

¢
;;<{>>«
¢

PHIL

" °<l> o

PHIL
PHI2 — 4
a
w1 @ B
¢

PHIL

o
R0

https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki_Deepl /6502 /data_bus.md
12:https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/imgstore/6502_ur_latch_tran.jpg

139



Notes in the margins for future revisions of the book.

140



Registers

The X and Y registers are used for index addressing. Register S is a stack pointer and the stack is
located at addresses 0x100 ... Ox1FF (on the first page).

Schematically the X, Y and S registers consist of 8 identical chunks (bits):

(In the schematic above, replace SBO and ADLO with SBx and ADLx for the remaining register
bits)

Each register bit is based on a trigger, loading and unloading of values on the buses is done by
control signals:

Y/SB: Place the value of the register Y on the SB bus
SB/Y: Load the Y register value from the SB bus
X/SB: Place the value of the register X on the SB bus
SB/X: Load the X register value from the SB bus
S/ADL: Place the old S register value on the ADL bus
S/SB: Place the old S register value on the SB bus
SB/S: Load the new S register value from the SB bus
S/S: Refresh S register, active when SB/S =0

So the registers can only connect to two buses: SB and ADL.

141



ADLO...7

| sB0..7

e  During PHI1 the X and Y registers output their value to the SB bus / are overloaded with
new values from the SB bus.

e  The Sregister has an input latch and an output latch. During PHI1 the value from the out-
put latch is placed on the SB or ADL buses and the input latch is either loaded with a new
value from the SB bus or refreshed from the output latch (S/S).

e During PHI2 the X and Y registers "store" their old value as the control signals disconnect
them from the bus.

®  The S register simply outputs its value to the SB or ADL bus during PHI2. The input latch is
overridden because the exchange commands are disabled during PHI2.

The SB and ADL buses are precharged during PHI2. This is done because it takes longer to
“charge" the bus than to "discharge" it. Therefore, when the bus is not needed - it is precharged,
so that it does not have "floating" values. If the value placed on the bus is 1, then the bus is al-
ready prepared ("charged") in advance. If the value placed on the bus is 0, then the bus is
"discharged" to ground.

In modern processors the task of precharging the bus is done by dedicated standard cells called
Bus Keeper.

In the transistor schematic above you can only see the transistors to charge the SB bus (located
in the circuit for the S register bits). The transistors to precharge the ADL bus are scattered next
to the program counter (PC).

i Pay special attention to the design of the S register. It has an input latch (to load a new val-
ue) and an output latch (to save the old value). Loading the new value (SB/S) and saving the
old value (S/ADL) can happen simultaneously.

142



Optimized Schematics

s/88
S/ADL

sB/S

s/

ADLe ' A0Le

N
g I S g b

sse  s8a see  sse s8e
@ > @ x o 4 o0
8 IS a N -] ee
> 8 N @ s £ 8

https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki_DeeplL/6502/regs.md
25:https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/imgstore/regs_logic.jpg

143



Notes in the margins for future revisions of the book.

144



ALU

It is not possible to show the whole ALU circuit, so let's saw it into its component parts and con-
sider each one separately.

Operations
AC Output

)
=]
Q.

=

0

—

<

Optimized Carry
BCD Correction

The ALU consists of the following components:

Input circuits for Al/BI latch loading

The main computational part (Operations)
A fast carry calculation circuit for the BCD
Intermediate result (ADD latch)

BCD correction circuit

Accumulator (AC)

Generally speaking the ALU is a mess of transistors and wires, but its workings are not very com-
plicated, as you can see later.

145



pHiz[@]

noewoo [@)

peioo[@]

oioo [@}

seroo[@]

apLeoo[@]

ADDrSE0E |6

apDrse7 [0
apoieoL[@]

o [y —

£ors [@——o
ors[@}——
s [@F———

SUMS

serac [@F——

ACISB

Q/ADHD

0101 7 [@——

o [g———
oan f@———

ACIDE 3
SBIDE ;
SBIADH -

—— Y S |

ALLLOPS | ECD_CARRY 4
HOB/A0D0 fearmy3 — PACIN = FHI
DB/ADD camyd camyd DC3  pre—
osADD camyh et {0 AP, = ADC
SB/ADD foarmy? DC7 e =t ADL
) = )=:E
ANDS
EORS o BUCUL S
OR% s
SRS s -t xors
SUME
LN
o3 &

)
nor
3B In L
5
nand
DB In
5
DLAT!
5
wor
ADEID DCLe
oL
4
s B AR e
AL
L] 0000001 OJa_Debugy d
oLe
-
0000001 0Bl_Debug -D)ﬂ
— AVRL

osa[@] I

oeo[@————
Det
Daz [y 5
pea[®]
DE4 [
T
pes[@}——
oer[@}——

ADLO [@}————]
AoL1 [@]

anLz [ 5

aDL3 [@]
ADL4 |0
ADLS [4H
aoLs[@)
ADL7 [p———

146




{@ecr

\DDER_HOLD

i 4A0D0x Out

145 BOA
ey
1AOL
5B Out

In

xB

ADL Ot

BCD

T

ADD

RHIZ
foamya
ACR

DA
mSA BCD Out

SBIn

JA00x In

00000100jADD Debuy

AC

x8

niin MR

ACiDB 58O
OFADHD
DAADHI? "

BCO In
DB Out

S8 In

ADH Out

AC Db

0000000 0AC_Debug

——@~r

147

————{@)a0H0
——@e0H1

————(@ons
L &0




Al/BI Latches

The input circuits consist of 8 identical chunks, which are designed to load input values on the Al
and Bl latches:

Control signals:

DB/ADD: Load direct value from DB bus to the Bl latch
NDB/ADD: Load inverse value from DB bus to the Bl latch
ADL/ADD: Load a value from the ADL bus to the Bl latch
SB/ADD: Load a value from the SB bus to the Al latch
0/ADD: Write 0 to the Al latch

(The picture shows the circuit for bit 0, the rest are the same)
Computational Part

The ALU uses an inverted carry chain, so the even and odd bit circuits alternate.

Bit 0 is slightly different from the other even bits because it has an input carry (/ACIN) and no
SRS input.

Schematic for bit 0:

Schematics for bits 2, 4, 6:

(The circuit for bit 2 is shown, the rest are the same)

148


https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/6502/alu.md#%D0%B2%D1%8B%D1%87%D0%B8%D1%81%D0%BB%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F-%D1%87%D0%B0%D1%81%D1%82%D1%8C

Schematics for bits 1, 3, 5, 7:

(The circuit for bit 1 is shown, the rest are the same)

Anatomically, the left side deals with logical operations, the right side is the adder (Full Adder),
and in the middle is the carry chain.

Control signals for ALU operations:

ORS: Logical OR operation (Al | Bl)
ANDS: Logical AND operation (Al & BI)
EORS: Logical XOR operation (Al ~ BI)

SRS: Shift Right. For this the result of the current nand operation is stored as the result of
the previous bit.

SUMS: Summation (Al + BI)

Notations on the schematics:

nand: intermediate result of NAND operation for the selected bit

and: intermediate result of AND operation for the selected bit (obtained by nand inversion)
nor: intermediate result of NOR operation for a selected bit

xor: intermediate result of EOR operation for the selected bit

nxor: intermediate result of an ENOR operation for the selected bit

carry: the result of a carry operation. The carry chain is inverted every bit, but for simplicity
all carry names do not consider value inversion.

res: the result of a logical operation or the result of an adder which is then stored on the
ADD latch. The result of an operation in inverted form.

149


https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/imgstore/alu_bit_odd_tran.jpg

To make it clearer how the intermediate results are obtained, all the main motifs are marked in

the image below:

(Bit 1 is shown, for the other bits the motif looks similar)

Logic for even bits:

nperoo[@] 8 E |
peo0[@}— L
000 [@}

seon[@}

ADLIADD

anps[@} I

DLATCH

Al

I_Debug

DLATCH

Ires
@ cout

Bl

@ror

I_Debug

eors[@} 1

ors[@]

sre[@T I
sums[@}

1cin@

prev_res @

9 0

[ m—
0 [ —

:

¥nar

ADIJ(._

¥

7

xor

@nand



Logic for odd bits:

DLATCH

npeioD [@] - E |
o0 [@]— i :

oiaoo[@}

seix00[@}

ADLADD ._l

Al

I_Debug

DLATCH

anos[@}
eors[@}

o

Bl

Ires

icout

@nor

I_Debug

@nand

ors[@}

srs[@}

sums[@}
cin[@}

prev_res IE

xor

5

I

se{[@}

o [@———
Aou[@}

Overflow calculation (control signal AVR):

e ity T

XOI’

151



Fast BCD Carry

This is the circuit that appears in patent US 3991307 (https://patents.google.com/patent/
US3991307A).

»
2
-]

)

1

The schematics are "layered on the side" for easy perception.

DC3 output is connected to the carry chain as follows:

How exactly this circuit works is written in the patent, | have nothing much to add. Just a mish-
mash of logic gates - do the same and it will work.

Besides calculating the carry for BCD the circuit also generates the ACR (ALU carry for flags) and
DAAH control signals for the BCD correction circuit.

152


https://patents.google.com/patent/US3991307A
https://patents.google.com/patent/US3991307A

Logic:

men[@]
carryd E

oo | @
oan[@—

norf0 0000000

nand(0 0000000

™

| ‘ = 007

M

xurUDUUUUUgl—'

Intermediate Result (ADD)

The intermediate result is stored on the ADD latch (stored in inverted form, output to the buses
in direct form). The ADD latch circuit consists of 8 identical pieces:

(The circuit is shown for bit 0, the others are the same)

(] ADD/SBO6: Place the value of the ADD latch on the SB bus. The control signal ADD/SB7 is
used instead of ADD/SBO06 for bit 7.

e  ADD/ADL: Place the ADD latch value on the ADL bus

153



BCD Correction

The BCD correction circuit is controlled by two signals: /DAA (perform correction after addition)
and /DsA (perform correction after subtraction).

The outputs of the circuit are connected to the accumulator inputs (AC) and the circuit takes into
account the ALU operation when the BCD mode is disabled.

Some of the accumulator inputs are connected directly to the SB bus and do not participate in
BCD correction (bits 0 and 4).

The circuit uses 4 auxiliary internal signals in its operation: DAAL, DAAH, DSAL and DSAH. The "L"
in the name stands for the lower part of the bits (0-3), the "H" stands for the higher part of the
bits (4-7).

Circuits for obtaining auxiliary signals:

DAAL DSAL DSAH

The DAAH circuit is in the carry circuit.

The correction circuits use a common motif:

®  The input combinatorial circuits, in various combinations accounting for the 4 auxiliary sig-
nals and the bits of the intermediate result (ADD latches)

e  Qutput xor, one of the inputs of which is a bit of the bus SB, and the second of the above
combinatorial circuits

154



Sawed schematics:

Bit 1 Bit2 Bit 3 Bit5 Bit6 Bit7

The auxiliary signals /ADDx on the BCD correction circuits are derived from the values of the
ADD latch bits as follows:

(Using /ADDS as an example)

155




Logic:

PHIZ[x1

DLATCH

‘EG’WIE_D_ —l _D’_ i DAAL

ACR|x1 daal_latoh

S i S Pl

daah_latoh

’DSAE DLATCH DSAL

dsal_latoh
DLATCH

DSAH

dsah_iateh
DAAL
Dl
seof 1 {Doua
381 [ + 1 outt
o2 frp———rd—— ]__c itz
83l ——— %—D — out3
H L
DAfH
D5AH
584 Douts
sesla j H- t outs
ste [er—o- [ ! -
oy — L] ol
HSo—]

Accumulator (AC)

The accumulator consists of eight identical pieces:

(The circuit for bit 3 is shown, the others are the same)

The accumulator inputs a value from the BCD correction circuit (bits 1-3, 5-7) or directly from the SB bus (bits 0
and 4).

In addition to directly outputting the accumulator to the SB and DB buses, other bus operations are also per-
formed at this point, so they are also discussed in this section.

SB/AC: Place the value from the SB bus/BCD correction circuit into the accumulator

AC/SB: Place the AC value on the SB bus

AC/DB: Place the AC value on the DB bus

SB/DB: Connect the SB bus to DB bus

SB/ADH: Connect the SB bus to ADH bus

0/ADH17: Forced write 0 to ADH bits 1-7. The control signal 0/ADHO is used for bit 0 instead of 0/ADH17.

e o o o o o

156



Optimized Schematics

S
AOL/A0D 08/ADD

@J
g

NDB/ADD

sa/f0D N

—D

a/800

caut

2

Ires

sein

fand

[\

B) L

74136

sas
shifurotate

https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki_DeeplL/6582/alu.md

1:https://github.com/emu-russia/breaks/blob/master/BreakingNESUWiki/imgstore/logisim/alu_even_bit_logisim.jpg

A
A0L/ADD 08/A0D

=
ﬁl D@a.

S ) Bt
=

- ﬁ nang

RS

E0Rs

B

S|

N RS
§ sninvrotate
5 right

seout

https://github.com/emu— russ1a/breaks/blob/mas(er/BreaklnqNESlel DeepL/6502/alu md

2:https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/imgstore/logisim/alu_odd_bit_logisim.jpg

PHI2

nc? ———ACR

0CLatch
};—.—l>c— ACR
/cavrg?—' >'4->“"”7 ﬂ
ACLatch

g

PHI2

oclatch
<D— ACR
3

carry7 —o_ @
ACLatch

https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki_Deepl /6502/alu.md

S5:carry_plus_overflow_evaluation

PHI2

nand?
carrys g

nor?
no carry goes into adder Bit 7,
but both adder inputs are 1.
> carry qgaes aut of Bit 7.
PHI2
and? ———————
carrys
AUR
AURLatch
nor?

1

carry gaes into adder Bit 7, for adde

Qverflou mdxca(ov

But Boih ander inputs are s | | dnput carey ds dldterent
5"ho carry gaes out of Bit 7| | fram outact carry.

157


https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/imgstore/6502/ttlworks/1_alu_even_bit_logisim.png
https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/imgstore/6502/ttlworks/2_alu_odd_bit_logisim.png
https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/imgstore/6502/ttlworks/5_carry_plus_overflow_evaluation.png

AND/NOR

et
'j )
D
/008 %m
YD
Jearryt corryt
xors ‘
e
[
e —
nands ande
/ACIN 1

anat.
xert
and2
xor3
ner2

xnors

ance
ACIN
ore
andt
xart
nor2
anc2
xora
o2
ands
xor?
xors
carnyt
ands
xore

I —aca

oc7

ar2
ands
xor?
xors
carryt——
ands

ando
ANN:;iS b
ore oan
anct
ot
wor2 #:t}’ *it>4—nm
anc2
s

side note: multi_function gate

e —a
0]
P
8]
n;ij
Pozsible.inplementations corny chain carry chain
P,
o e ore oo B
2 < @ Z|2
e 1 I |® |9
EI woo | 121313(218)y ululx
X G|z z|g 8
Glo 0o o|e oo @
F W, e/o 1|o|i|e e|e @
;Ecm:DtD— e[t afe|ta|e|e o
Eg are 11111 ]1]@]1
. ije o|o|e|i e|e e
3 moo ile t|eo 1|1 11 1
. " x
28 oo ::i>‘::£>47 i1/ efe|1|t /11 1
8 : 11 111|112

https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki_Deepl /65082/alu.md

3:https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/imgstore/logisim/alu_bcd_carry_logisim.jpg

158



https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/imgstore/6502/ttlworks/3_alu_bcd_carry_logisim.png

PHI2

/008

dsah_latch 586 —outd

I ;D i}i outt

no0t <[><P 1

/AR

sS85 [>o

V

%557 ﬁi

!

AOC correction
Bit 0.3

PHI2

oAn DAAL.
SBC correction
Bit 0.3
cit 0sAL.
/08A —¢—1
ADC correction
Bit 4.7
[
S8C carvection)
S 4 80— ou@
H
dsah_latch >
ACR =4
Aoc S8t
AODL
) 2) out2
<| >0 :D sac s82

D
R —)| )
D-—p
hOC $BS
;@7Ms
Voo o

6

D 1D o
- H -

https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki_Deepl /6502/alu.md
4:https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/imgstore/logisim/alu_bcd_logisim. jpg

159


https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/imgstore/6502/ttlworks/4_alu_bcd_logisim.png

Notes in the margins for future revisions of the book.

160



Program Counter (PC)

Because of the 8-bit nature of the processor its instruction counter is divided into two 8-bit
halves: PCL (Program Counter Low) and PCH (Program Counter High).

The PCH is also divided into two halves: the low part of the bits (0-3) and the high part (4-7).
PCL

Represents the low 8 least significant bits of PC.

PCLO-3 PCL4-7

- pou/aoL

2
<
g

PCL/PCL

161



®  The circuits alternate for even and odd bits because an optimization known as an inverted
carry chain is used

e  The control signal #1/2cC (0: perform PC increment) comes to the PCLO bit

(] PCLC (PCL Carry): Carry from the lowest 8 bits (PC[0-7]) to the highest (PC[8-15])

®  PCL connects to two buses: ADL and DB

(] PCL/PCL is used when PCL is not connected to any bus (to maintain the current state)

e  Each bit contains two latches (input latch PCLSx and output latch PCLx) which implement
the counter logic

PCH

Represents the top 8 most significant bits of PC.

1+ The circuits for the even bits (0, 2, ...) of the PCH repeat the circuits for the odd bits (1, 3, ...) of
the PCL. Similarly, circuits for odd bits (1, 3, ...) of PCH repeat circuits for even bits (0, 2, ...) of
PCL.

PCH0-3 PCH 4-7

The circuit marked as "patch” to form the PCHC is actually between the ADL/PCL and #1/PC
control outputs.

®  The basic principles of PCH are the same as PCL, but PCH is divided into two halves: the
lower half (PCHO-3) and the higher half (PCH4-7)

®  PCHC (PCH Carry): Carry from the lowermost to the highestermost PCH half
®  The PCH connects to two buses: ADH and DB
(] PCH/PCH is used when the PCH is not connected to any bus (to maintain the current state)

162



ADL/ADH Precharge

In between the PC bits you can find transistors for precharge of the ADL and ADH buses:

(The image shows the precharge transistors for ADH4 and ADL5. The others are similar)

Logic

It makes sense to show only the bit schematics (the circuitry alternates between even and odd
PCL/PCH bits).

This circuit is used, for example, in PCLO:

T e S —
cin[@F———— peL > @vsx
ol
o > @i
souroL[@} posedge
peuroL [0} 4
peuaoL [@F
——@cout
peupe[@} rets
F——@sout
ApL[O}—— r
o

o

@roL_pebug
@roLs_Debug

This circuit is used, for example, in PCL1:

pri2[0}

o
I [y E— o

souroL [@F

> @pex
> JADLx

peupcL [0}

peLroL [}
peupe[@}

A @] o’

@ cout

r—@sam

@roL_evug
{@rcLs_Debug

For these circuits to work correctly in the simulator, FF uses a posedge trigger for the PCL/PCH

register.

163



Optimized schematics (Even):

poLspeL

noLseeL

poLspeL

poLspeL

https://github.com/emu-russia/breaks/blob/master/BreakingNESHiki_Deepl/6502/pc.nd
20:https://github.com/emu-russia/breaks/blob/master /BreakingNESHiki/imgstore/pc_even_bit_logisim.jpg

Optimized schematics (Odd):

peL/pCL
peL/oe
peL/AOL
ADL/PCL

E » Aot

Latch

N Aot

Laten

peL/peL
peL/oB

peL/AoL

ADL/PEL

https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki_Deepl /65@2/pc.md
21:https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki/imgstore/pc_odd_bit_logisim.jpg

164



Optimized logic circuit for the carry chain:

#1/PC

PC carry chain

=

#1/PC

pCcLC ("7

‘ [Pee [E0] #]
[Pt [l ®]

R
ENEINE
ENFIEE (rez [ 7]
w0, (2]
ENEAL)
EREEY
DN

pess [ 7]

https://github.com/emu-russia/breaks/blob/master/BreakingNESWiki_Deepl /6502/pc.md
22:PC_carry_chain

165



Notes in the margins for future revisions of the book.

166



6502 Operations

This section describes how the processor performs various operations:

®  Processor Reset, Interrupts and BRK Sequence
e  Adescription of the operation of the various instructions

(] Reaction to external signals (RDY, SO pins)

Undefined Behavior (execution of opcodes not provided by processor's developers)
Operation description motif:

(] The operation is divided into cycles (T0O, T1, and so on)
®  Each cycle is considered in two half-cycles (PHI1 / PHI2)
e  The state of processor internals (signals, registers, buses) is described by tables at each half-

cycle

Instruction operation is considered in context between two nop operations:

nop
<instr>
nop

This is because the overlap causes some instructions to "finish" their work at the first half-cycle
(PHIT) of the next instruction. This is why a wrapper in the form of nop is used, as a maximum
non-invasive variant of work.

This revision of the book covers only the following operations:

®  BRK Sequence at Power Up
e  JSRinstruction
e LDA #imm instruction

. NOP instruction

In this way we clear the way for those who like to delve into the inner workings of circuits and
study them in detail, by analogy.

You can find a description of the rest of the operations on the project Wiki on GitHub.

167



BRK Sequence

BRK-sequence is a unified mechanism of CPU reaction to external interrupt signals (/NMI, /
IRQ, /RES) and also to execution of instruction BRK (0x00).

In the main part has already been mentioned how the developers have approached the unifica-
tion of this mechanism (injection of the operation code 0x00 in the register of instructions, etc.),
in this section is a more detailed analysis.

Further consideration of the state is made with the assumption that input RDY = 1 (processor
ready).

BRK Software Model

General information for programmers, sufficient for a general understanding of the BRK-
sequencing process.

Cycle Operation
To Load BRK opcode (instruction) / inject BRK (interrupt). Increment PC if a BRK instruction is executed
directly
T1 Load and discard data. Increment PC if a BRK instruction is executed directly
T2 Put PCH on the stack
T3 Put PCL on the stack
T4 Put P on the stack
T5 Read interrupt vector address (low byte)
T6 Read interrupt vector address (high byte)

BksroueHMe NUTaHuA

Mpw BKAKOYEHUW NUTAHWUA MPOLLECCOP BbINOAHAET OCOBEHHYO nocneaoBaTenbHOCTh (Pre-BRK).

168



UB (OxFF), T1 (PHI1)

Top Part:

State

Interrupt processing

RESP=1

DORES=0

BRK6E=0

B_OUT=0
Dispatcher

/ready = 0

WR=1

FETCH=0

0/IR=1

ENDS =1
TREST =1

TRESX=0

/TWOCYCLE=1
TRES2=1

/T0 =1

/TIX=0

/T2-/T5 =1
Decoder

44: INC NOP (TX),
60: ADC SBC (T1),
106: LSR ROR DEC
INC DEX NOP (4x4

bottom right) (TX),
112: ADC SBC (T1)

PD=0x00

IR=0xFF

Note

This is not an effect of /RES=0 because the input FF of the /RES pin is only updated during
PHI2. This is the effect of the output resp_latch.

The input DORES_FF latch is only updated with the RESP signal during PHI2.

The value of the output latch is undefined, so through the inverter the value of BRK6E takes the
value 0.

Although DORES = 0, the output latch value of the B flag is undefined and BRK6E = 0, so
B_OUT = 0.

The value of the output /ready latch is updated during PHI2. At the time of power up the value
of the latch is undefined, as a result /ready takes the value 0.

WR is generated by a 3-NOR operation whose inputs (/ready, DORES, wr_latch) take the value 0.
As aresult WR = 1

The value of the output latch of the FETCH circuit is not yet defined (updated during PHI2).

Since FETCH = 0 and B_OUT = 0.
The values of the output latches of the ENDS circuit are undefined.
Since ENDS =1

The TRESX circuit includes a latch whose value is not yet defined (PHI2). And through the
inverter and NOR - TRESX as a result takes the value 0.

PD=0x00
Since TRESX = 0

According to the circuit

According to the circuit

TRES2 =1

Executes OxFF/T1. The operation makes no sense because all random logic output latches are
only updated during PHI2.

As a result of 0/IR=1 the value of PD = 0x00

The value of the IR register is not updated (FETCH = 0), and it is arranged so that the decoder
gets the value OxFF

169



Bottom Part:

As a result of the fact that the output commands are only loaded during PHI2 - their output
values immediately after power up are undefined.

This causes almost all commands of the bottom part to be active (the lack of charge on the out-
put latches' gates causes them to have 1 on the output). In this case the bottom part "goes cra-

zy".

State
ADH/ABH, ADL/ABL

0/ADLO

0/ADL1

0/ADL2

0/ADHO, 0/ADH17

Y/SB, SB/Y, X/SB, SB/X, S/ADL, S/SB,
SB/S, S/S

NDB/ADD, DB/ADD, 0/ADD, SB/ADD,
ADL/ADD, ADD/SB06, ADD/ADL, SB/
AC, AC/SB, AC/DB, SB/DB, SB/ADH

ALU Operations
/ACIN

/DAA

/DSA
#1/PC

ADH/PCH, PCH/PCH, PCH/ADH, PCH/
DB, ADL/PCL, PCL/PCL, PCL/ADL,
PCL/DB

RD =0

DL/ADL, DL/ADH, DL/DB

SB
DB

ADL

ADH

Note

The address bus takes the value 0x0000

Both active commands cause the ADH bus to have a value of 0x00.

Y/SB, X/SB, SB/S, S/S have no effect, because the register is updated only
during PHI2. As a result, the current value of registers X, Y, S simultaneously
placed on the bus SB (for the register S - also on the bus ADL command S/
ADL). The peculiarity of the register S is that the value from the output latch is
output in inverted form. That is, on the bus SB and ADL placed value OxFF (S =
0). But since the X/Y registers have already put value 0x00 on the bus before
that, the ground wins and the SB bus takes value 0x00

Al: The 0/ADD, SB/ADD commands have the effect of loading 0 on the Al latch
and simultaneously "grounding” the SB bus (SB/ADD opens the SB bus and 0/
ADD zeroes it). But this makes no sense because the SB is already grounded
by register operations. Bl: There is no point in considering (?). ALU Output:
There is no point in considering (?). ADD/SB7 = 0 because of the nature of its
output latch (but it makes no sense now either)

All disabled
TBD

TBD

TBD
TBD

TBD

According to WR = 1

Setting the DL/ADL and DL/ADH commands simultaneously causes the ADL/
ADH buses to be shorted, causing them both to become 0x00 (the ADH is
already grounded by the 0/ADHO, 0/ADH17 commands). DL/DB also causes
the DB bus to be grounded. The DOR latch = 0x00.

0x00
0x00
0x00

0x00

170



Phenomenon: All parts of the processor "go crazy", but miraculously all the operations cause the
processor to write 0x00 to address 0x0000.

The image below is a schematic representation of the connections of the lower part of the pro-
cessor. The currently active commands of the lower part are highlighted.

Similar images will be found further on to explain each half-cycle of the operation in progress.

ADL

AB..7

|

HEGE=—= : o
— a

Sro .
ADH

A8..15

171



UB (OxFF), T1 (PHI2)

Dispatcher T0: 0, /T0: 1, /T1X: 0, O/IR: 1, FETCH: 1, /ready: 0, WR: 0, ACRL1: 1, ACRL2: 1, T5: 0, T6: 1, ENDS: 0,
Interrupts /NMIP: 1, /IRQP: 1, RESP: 1, BRK6E: 0, BRK7: 1, DORES: 1, /DONMI: 0

Extra Cycle T1:1, TRES2: 1, /T2: 1, /T3: 1, /T4: 1, /T5: 1

Decoder 44: INC NOP (TX), 60: ADC SBC (T1), 106: LSR ROR DEC INC DEX NOP (4x4 bottom right) (TX), 112:
Commands ADD_SB7, ADD_SB06, PCH_ADH, PCL_ADL, PCL_DB, ADH_ABH, SB_DB, DBZ_Z, DB_N, ACR_C, AVR_V
ALU Carry In 0

DAA 1

DSA 1

Increment PC 0

Regs IR = OxFF, PD = 0x00, Y = 0x00, X = 0x00, S = 0x00, Al = 0x00, Bl = OxFC, ADD = OxFF, AC = 0x0A
PCL 0x00

PCH 0x00

ABL 0x00

ABH 0x00

DL 0x00

DOR 0x00

Flags C:0,Z:0,1:0,D:0,B:0,V:0,N: 0

Buses SB = OxFF, DB = 0x00, ADL = 0x00, ADH = 0x00

0%
© ADL
T

constant
generaters

De..7

ADH

A8..15

172



PreBRK (0x00), TO (PHI1)

Dispatcher T0: 1, /T0: 0, /T1X: 1, 0/IR: 1, FETCH: 1, /ready: 0, WR: 0, ACRL1: 1, ACRL2: 1, T5: 0, T6: 0, ENDS: 0,
Interrupts /NMIP: 1, /IRQP: 1, RESP: 1, BRK6E: 0, BRK7: 1, DORES: 1, /DONMI: 0

Extra Cycle T1:0, TRES2: 1, /T2: 1, /T3: 1, /T4: 1, /T5: 1

Decoder 34: TO ANY, 87: BRK RTI (T0), 94: BRK RTI (TX), 121: /IR6, 126: /IR7

Commands S_S, DB_ADD, SB_ADD, SUMS, ADD_SB7, ADD_SB06, SB_AC, ADH_PCH, PCH_ADH, ADL_PCL,
ALU Carry In 0

DAA 0

DSA 0

Increment PC 0

Regs IR = 0x00, PD = 0x00, Y = 0x00, X= 0x00, S = 0x00, Al = OxFF, Bl = 0x00, ADD = OxFF, AC = OxAA
PCL 0x00

PCH 0x00

ABL 0x00

ABH 0x00

DL 0x00

DOR 0x00

Flags C:1,Z:1,1:0,D:0,B:0,V:0,N: 0

Buses SB = 0x00, DB = 0x00, ADL = 0x00, ADH = 0x00

A0..7
>
[w}
152

constant
generators

173



PreBRK (0x00), TO (PHI2)

Component/Signal

State

Dispatcher

T0: 1, /T0: 0, /T1X: 1, 0/IR: 1, FETCH: 0, /ready: 0, WR: 0, ACRL1: 0, ACRL2: 1, T5: 0, T6:

Interrupts

Extra Cycle Counter

/NMIP: 1, /IRQP: 1, RESP: 1, BRKGE: 0, BRK7: 1, DORES: 1, /DONMI: 0

T1:0, TRES2: 1, /T2: 1, /T3: 1, /T4: 1, /T5: 1

Decoder 34: TO ANY, 87: BRK RTI (T0), 94: BRK RTI (TX), 121: /IR6, 126: /IR7
Commands SUMS, ADD_ADL, ADH_ABH, ADL_ABL, DL_ADH, DL_DB

ALU Carry In 0

DAA 0

DSA 0

Increment PC 0

IR = 0x00, PD = 0x00, Y = 0x00, X = 0x00, S = 0x00, Al = OxFF, Bl = 0x00, ADD =

Regs OXFF, AC = OXAA

PCL 0x00

PCH 0x00

ABL 0x00

ABH 0x00

DL 0x00

DOR 0x00

Flags C1,Z1,1:0,D:0,B:0,V:0,N: 0

Buses SB = OxFF, DB = OxFF, ADL = OxFF, ADH = OxFF
N
S DL
<

constant
generators

De..7

< oo ADH

A8..15

174




PreBRK (0x00), TO1 (PHI1)

Component/Signal

State

Dispatcher

Interrupts

T0: 1, /T0: 0, /T1X: 0, O/IR: 1, FETCH: 0, /ready: 0, WR: 0, ACRL1: 0, ACRL2: 0, T5: 0, T6: O,

ENDS: 0, ENDX: 1, TRES1: 0, TRESX: 0

/NMIP: 1, /IRQP: 1, RESP: 1, BRK6E: 0, BRK7: 1, DORES: 1, /DONMI: 0

Extra Cycle Counter

T1:0, TRES2: 1, /T2: 1, /T3: 1, /T4: 1, /T5: 1

Decoder 34: T0 ANY, 87: BRK RTI (T0), 94: BRK RTI (TX), 121: /IR6, 126: /IR7

Commands SD_LS_'ADDBI-T,ADDIE'DSBB_ADDl SUMS, ADD_ADL, ADH_PCH, ADL_PCL, ADH_ABH, ADL_ABL,
ALU Carry In 0

DAA 0

DSA 0

Increment PC 0

Regs

IR = 0x00, PD = 0x00, Y = 0x00, X = 0x00, S = 0x00, Al = OxFF, Bl = 0x00, ADD = OxFF, AC

= OxAA

PCL OxFF

PCH 0x00

ABL OxFF

ABH 0x00

DL 0x00

DOR 0x00

Flags C1,Z1,1:0,D:0,B:0,V:0,N: 0

Buses SB = OxFF, DB = 0x00, ADL = OxFF, ADH = 0x00
N
S ADL
<«

constant

generaters

175

A8..15

De..7




PreBRK (0x00), TO1 (PHI2)

Component/Signal State
Dispatcher T0: 1, /T0: 0, /T1X: O, O/IR: 1, FETCH: O, /ready: 0, WR: 0, ACRL1: 0, ACRL2: 0, T5: 0, T6: O,
Interrupts /NMIP: 1, /IRQP: 1, RESP: 1, BRK6E: 0, BRK7: 1, DORES: 1, /DONMI: 0

Extra Cycle Counter

T1:0, TRES2: 1, /T2: 1, /T3: 1, /T4: 1, /T5: 1

Decoder 34: T0 ANY, 87: BRK RTI (T0), 94: BRK RTI (TX), 121: /IR6, 126: /IR7
Commands SUMS, ADD_ADL, ADH_ABH, ADL_ABL, DL_ADH, DL_DB

ALU Carry In 0

DAA 0

DSA 0

Increment PC 0

Regs IR = 0x00, PD = 0x00, Y = 0x00, X = 0x00, S = 0x00, Al = OxFF, Bl = 0x00, ADD = OxFF,
PCL OxFF

PCH 0x00

ABL OxFF

ABH 0x00

DL 0x00

DOR 0x00

Flags C:1,Z1,1:0,D:0,B:0,V:0,N: 0

Buses SB = OxFF, DB = OxFF, ADL = OxFF, ADH = OxFF

constant
generators

A8..15

Further, until /RES takes value 1 - processor will execute in PreBRK loop TO+T1.

176




Notes in the margins for future revisions of the book.

177



JSR (0x20)
Timing:

®  T2:Read new PCL

®  T3: Dummy read from stack
®  T4: Write return PCH to stack
®  T5: Write return PCL to stack
e  T0: Read new PCH

®  T1:Set new PC + Fetch next opcode

178



JSR (0x20), T2 (PHI1)

Dispatcher

T0: 0, /T0: 1, /T1X: 1, O/IR: O, FETCH: 1, /ready: 0, WR: 0, ACRL1: 1, ACRL2: 0, T5: 0, T6: 0, ENDS: 0,

Interrupts

/NMIP: 1, /IRQP: 1, RESP: 0, BRKGE: 0, BRK7: 1, DORES: 0, /DONMI: 1

Extra Cycle Counter

T1:0, TRES2: 0, /T2: 0, /T3: 1, /T4: 1, /T5: 1

Decoder 28: T2, 33: LEFT_ALL (T2), 35: STK2, 48: JSR2, 57: BRK JSR RTI RTS Push/pull (T2), 95: JSR (TX),
Commands S_S, DB_ADD, SB_ADD, SUMS, ADD_SB7, ADD_SB06, ADH_PCH, PCH_ADH, ADL_PCL, PCL_ADL,
ALU Carry In 0

DAA 0

DSA 0

Increment PC

Regs IR=0x20, PD=0x20, Y=0x00, X=0x05, S=0xFD, Al=0x6B, BI=0x6B, ADD=0x6B, AC=0x6C
PCL 0x07

PCH 0xCO

ABL 0x07

ABH 0xCO

DL 0x20

DOR 0x6B

Flags C:1,2:0,1:1,D:0,B:1,V:0,N: 0

Buses SB=0x6B, DB=0x6B, ADL=0x07, ADH=0xCO

constant
generators

A8..15

179




JSR (0x20), T2 (PHI2)

Dispatcher

T0: 0, /TO: 1, /T1X: 1, 0/IR: 1, FETCH: 0, /ready: 0, WR: 0, ACRL1: 1, ACRL2: 1, T5: 0, T6: 0, ENDS: 0,
ENDX: 1, TRES1: 0, TRESX: 1

Interrupts

/NMIP: 1, /IRQP: 1, RESP: 0, BRK6E: 0, BRK7: 1, DORES: 0, /DONMI: 1

Extra Cycle Counter

T1:0, TRES2: 0, /T2: 0, /T3: 1, /T4: 1, /T5: 1

28: T2, 33: LEFT_ALL (T2), 35: STK2, 48: JSR2, 57: BRK JSR RTI RTS Push/pull (T2), 95: JSR (TX),

Decoder 121: /IR6, 126: /IR7

Commands S_ADL, SUMS, ADH_ABH, ADL_ABL, Z ADH17, SB_DB, DL_DB
ALU Carry In 0

DAA 0

DSA 0

Increment PC

Regs IR=0x20, PD=0x00, Y=0x00, X=0x05, S=0xFD, Al=0x6B, BI=0x6B, ADD=0xD6, AC=0x6C
PCL 0x08

PCH 0xCO

ABL 0x07

ABH 0xCO

DL OxOE

DOR 0x6B

Flags C:1,Z:0,1:1,D:0,B:1,V:0,N: 0

Buses SB=0xFF, DB=0xFF, ADL=0xFD, ADH=0x01

ADL

constant
generaters

De..7

A8..15

180




JSR (0x20), T3 (PHI1)

Dispatcher E%SXqOT;{E/STXO !I'l{)E/g){( 11 FETCH: 0, /ready: 0, WR: 0, ACRL1: 0, ACRL2: 1, T5: 0, T6: 0, ENDS: 0,

Interrupts /NMIP: 1, /IRQP: 1, RESP: 0, BRK6E: 0, BRK7: 1, DORES: 0, /DONMI: 1

Extra Cycle Counter T1:0, TRES2: 0, /T2: 1, /T3: 0, /T4: 1, /T5: 1

Decoder ?gGBRK JSR RTI RTS Push/pull + BIT JMP (T3), 78: JSR (T3), 86: T3 ANY, 95: JSR (TX), 121: /IR6,
: /IR7

Commands g_B/jBIB. SD?-:%BZ_ADD, ADL_ADD, SUMS, PCH_PCH, PCL_PCL, ADH_ABH, ADL_ABL, Z_ADH17,

ALU Carry In 0

DAA 0

DSA 0

Increment PC 0

Regs IR=0x20, PD=0x00, Y=0x00, X=0x05, S=0xFD, Al=0x00, BI=0xFD, ADD=0xD6, AC=0x6C

PCL 0x08

PCH 0xCO

ABL OxFD

ABH 0x01

DL 0x0E

DOR OxOE

Flags C:1,20,1:1,D:0,B:1,V:1,N: 0

Buses SB=0x0E, DB=0x0E, ADL=0xFD, ADH=0x01

ADL

AB..7

constant
generaters

De..7

ADH

A8..15

181



JSR (0x20), T3 (PHI2)

Dispatcher .IIE-RJI;J)'(/:OT:{E/ST)E) 1'I:R0E/$( 11 FETCH: 0, /ready: 0, WR: 1, ACRL1: 0, ACRL2: 0, T5: 0, T6: 0, ENDS: 0,

Interrupts /NMIP: 1, /IRQP: 1, RESP: 0, BRK6E: 0, BRK7: 1, DORES: 0, /DONMI: 1

Extra Cycle Coun- T1:0, TRES2: 0, /T2: 1, /T3: 0, /T4: 1, /T5: 1

Decoder ?SGBRK JSR RTI RTS Push/pull + BIT JMP (T3), 78: JSR (T3), 86: T3 ANY, 95: JSR (TX), 121: /IR6,
: /IR7

Commands SUMS, ADD_ADL, PCH_DB, ADL_ABL

ALU Carry In 0

DAA 0

DSA 0

Increment PC 0

Regs IR=0x20, PD=0x00, Y=0x00, X=0x05, S=0xO0E, Al=0x00, BI=0xFD, ADD=0xFD, AC=0x6C

PCL 0x08

PCH 0xCO

ABL OxFD

ABH 0x01

DL 0x00

DOR OxOE

Flags C1,20,1:1,D:0,B:1,V:1,N: 0

Buses SB=0xFF, DB=0xCO, ADL=0xFD, ADH=0xFF

N
IS ADL
<C

constant
generaters

A8..15

182



JSR (0x20), T4 (PHI1)

Component/Signal State

Dispatcher El?lgxqu:RE/S1-11)é) 1'I'ROE/$( ‘I1 FETCH: 0, /ready: 0, WR: 1, ACRL1: 0, ACRL2: 0, T5: 0, T6: 0, ENDS: 0,
Interrupts /NMIP: 1, /IRQP: 1, RESP: 0, BRK6E: 0, BRK7: 1, DORES: 0, /DONMI: 1

Extra Cycle Counter T1:0, TRES2: 0, /T2: 1, /T3: 1, /T4: 0, /T5: 1

Decoder 37: BRKJSR (T4), 85: T4 ANY, 95: JSR (TX), 121: /IR6, 126: /IR7

Commands S_S, SB_ADD, ADL_ADD, SUMS, ADD_ADL, PCH_PCH, PCH_DB, PCL_PCL, ADL_ABL
ALU Carry In 0

DAA 0

DSA 0

Increment PC 0

Regs IR=0x20, PD=0x00, Y=0x00, X=0x05, S=0x0E, Al=0xFF, BI=0xFD, ADD=0xFD, AC=0x6C
PCL 0x08

PCH 0xCO

ABL OxFD

ABH 0x01

DL 0x00

DOR 0xCO

Flags C1,Z0,1:1,D:0,B:1,V:0,N: 0

Buses SB=0xFF, DB=0xCO, ADL=0xFD, ADH=0xFF

ADL

AB..7
constant
generators

De..7

e ADH

A8..15
183




JSR (0x20), T4 (PHI2)

Dispatcher E%SS/SOEIL&1)1( }R%Q?(;‘FIEES:P /ready: 0, WR: 1, ACRL1: 0, ACRL2: 0, T5: 0, T6: O,
Interrupts /NMIP: 1, /IRQP: 1, RESP: 0, BRK6E: 0, BRK7: 1, DORES: 0, /DONMI: 1

Extra Cycle Counter T1:0, TRES2: 0, /T2: 1, /T3: 1, /T4: 0, /T5: 1

Decoder 37: BRK JSR (T4), 85: T4 ANY, 95: JSR (TX), 121: /IR6, 126: /IR7

Commands SUMS, ADD_ADL, PCL_DB, ADL_ABL

ALU Carry In 0

DAA 0

DSA 0

Increment PC 0

Regs IR=0x20, PD=0x00, Y=0x00, X=0x05, S=0x0E, Al=0xFF, BI=0xFD, ADD=0xFC, AC=0x6C
PCL 0x08

PCH 0xCO

ABL OxFD

ABH 0x01

DL 0x00

DOR 0xCO

Flags C:1,20,1:1,D:0,B:1,V:0,N: 0

Buses SB=0xFF, DB=0x08, ADL=0xFC, ADH=0xFF

ADL

AB..7

constant
generaters

De..7

ADH

A8..15

184



JSR (0x20), T5 (PHI1)

Component/Signal

State

Dispatcher

Interrupts

T0: 0, /TO: 1, /T1X: 1, 0/IR: 1, FETCH: O, /ready: 0, WR: 1, ACRL1: 1, ACRL2: 0, T5: 0, T6: 0,
ENDS: 0, ENDX: 0, TRES1: 0, TRESX: 1

/NMIP: 1, /IRQP: 1, RESP: 0, BRK6E: 0, BRK7: 1, DORES: 0, /DONMI: 1

Extra Cycle Counter

T1:0, TRES2: O, /T2: 1, /T3: 1, /T4: 1, /T5: 0

Decoder 56: JSR/5, 95: JSR (TX), 103: JSR (T5), 121: /IR6, 126: /IR7

Commands S_S, SB_ADD, ADL_ADD, SUMS, ADD_ADL, PCH_PCH, PCL_PCL, PCL_DB, ADL_ABL
ALU Carry In 0

DAA 0

DSA 0

Increment PC 0

Regs IR=0x20, PD=0x00, Y=0x00, X=0x05, S=0x0E, Al=0xFF, BI=0xFC, ADD=0xFC, AC=0x6C
PCL 0x08

PCH 0xC0

ABL OxFC

ABH 0x01

DL 0x00

DOR 0x08

Flags C:1,Z20,1:1,D:0,B:1,V:0,N: 0

Buses SB=0xFF, DB=0x08, ADL=0xFC, ADH=0xFF

AB..7

ADL

O
o

O
o
2ye o f [

constant
generators
o = o)

DB
ADH

i

A8..15

185

Do..7



JSR (0x20), T5 (PHI2)

Dispatcher EE“;JS/'OI'OE:\‘,E{;’(Dé '}kgél?g;}g.ég;(? /ready: 0, WR: 0, ACRL1: 1, ACRL2: 1, T5: 0, T6: 0,
Interrupts /NMIP: 1, /IRQP: 1, RESP: 0, BRK6E: 0, BRK7: 1, DORES: 0, /DONMI: 1

Extra Cycle Counter T1:0, TRES2: 0, /T2: 1, /T3: 1, /T4: 1, /T5: 0

Decoder 56: JSR/5, 95: JSR (TX), 103: JSR (T5), 121: /IR6, 126: /IR7

Commands SUMS, ADD_SB7, ADD_SB06, PCH_ADH, PCL_ADL, ADH_ABH, ADL_ABL

ALU Carry In 0

DAA 0

DSA 0

Increment PC 0

Regs IR=0x20, PD=0x00, Y=0x00, X=0x05, S=0xOE, Al=0xFF, BI=0xFC, ADD=0xFB, AC=0x6C
PCL 0x08

PCH 0xCO

ABL OxFC

ABH 0x01

DL 0xCO

DOR 0x08

Flags C:1,2Z0,1:1,D:0,B:1,V:0,N: 0

Buses SB=0xFB, DB=0xFF, ADL=0x08, ADH=0xCO

ADL

AB..7

constant
generaters

De..7

ADH

A8..15

186



JSR (0x20), TO (PHI1)

Component/Signal

State

Dispatcher

T0: 1, /T0: 0, /T1X: 1, 0/IR: 1, FETCH: 0, /ready: 0, WR: 0, ACRL1: 1, ACRL2: 1, T5: 0, T6: 0, ENDS:
0, ENDX: 1, TRES1: O, TRESX: 0

Interrupts

Extra Cycle Counter

/NMIP: 1, /IRQP: 1, RESP: 0, BRK6E: 0, BRK7: 1, DORES: 0, /DONMI: 1

T1.0, TRES2: 1, /T2: 1, /T3:1, /T4: 1, /T5: 1

Decoder 21: JSR (T0), 34: TO ANY, 95: JSR (TX), 121: /IR6, 126: /IR7

Commands S_S, NDB_ADD, SB_ADD, SUMS, ADD_SB7, ADD_SB06, PCH_PCH, PCH_ADH, ADL_PCL,
PCL_ADL, ADH_ABH, ADL_ABL

ALU Carry In 0

DAA 0

DSA 0

Increment PC

Regs IR=0x20, PD=0x00, Y=0x00, X=0x05, S=0x0E, Al=0xFB, BI=0x00, ADD=0xFB, AC=0x6C
PCL 0x08

PCH 0xCo

ABL 0x08

ABH 0xCO

DL 0xCo

DOR OxFF

Flags C:1,Z0,1:1,D:0,B:1,V:0,N: 0

Buses SB=0xFB, DB=0xFF, ADL=0x08, ADH=0xCO

AB..7

0O
@

'\jF

constant
generators
o = of

PCH

187

:

ABH

A8..15

PCL

ADL

lawch

De..7

data

DL

(8]=]

— (DH



JSR (0x20), TO (PHI2)

Component/Signal State

Dispatcher TO: 1, /T0: 0, /T1X: 1, 0/IR: 1, FETCH: 0, /ready: 0, WR: 0, ACRL1: 1, ACRL2: 1, T5: 0, T6: 0,
P ENDS: 1, ENDX: 1, TRES1: 1, TRESX: O

Interrupts /NMIP: 1, /IRQP: 1, RESP: 0, BRK6E: 0, BRK7: 1, DORES: 0, /DONMI: 1

Extra Cycle Counter

T1:0, TRES2: 1, /T2: 1, /T3: 1, /T4: 1, /T5: 1

Decoder 21:JSR (T0), 34: TO ANY, 95: JSR (TX), 121: /IR6, 126: /IR7

Commands S_ADL, SUMS, ADD_SB7, ADD_SB06, ADH_ABH, ADL_ABL, DL_ADH, DL_DB
ALU Carry In 0

DAA 0

DSA 0

Increment PC

Regs IR=0x20, PD=0x00, Y=0x00, X=0x05, S=0xO0E, Al=0xFB, BI=0x00, ADD=0xFB, AC=0x6C
PCL 0x09

PCH 0xC0

ABL 0x08

ABH 0xC0

DL 0xC0

DOR OxFF

Flags C:1,20,1:1,D:0,B:1,V:0,N: 0

Buses SB=0xFB, DB=0xFF, ADL=0x0E, ADH=0xFF

AB..7

ADL

constant
generators

De..7

o oo ADH

A8..15
188



JSR (0x20), T1 (PHI1)

Component/Signal

State

Dispatcher

T0: 0, /T0: 1, /T1X: 0, O/IR: 1, FETCH: 0, /ready: 0, WR: 0, ACRL1: 0, ACRL2: 1, T5: 0, T6: O,
ENDS: 1, ENDX: 1, TRES1: 1, TRESX: 0

Interrupts

/NMIP: 1, /IRQP: 1, RESP: 0, BRK6E: 0, BRK7: 1, DORES: 0, /DONMI: 1

Extra Cycle Counter

T1:1, TRES2: 1, /T2: 1, /T3: 1, /T4: 1, /T5: 1

Decoder 95: JSR (TX), 121: /IR6, 126: /IR7

Commands Z T;I—IID_I;\ sa_i IéDLli_AABDLDDE__AAgE gtl_l\lgg ADD_SB7, ADD_SB06, ADH_PCH, ADL_PCL,
ALU Carry In 0

DAA 0

DSA 0

Increment PC

Regs IR=0x20, PD=0x00, Y=0x00, X=0x05, S=0x0E, Al=0x00, BI=0xC0, ADD=0xFB, AC=0x6C
PCL 0x09

PCH 0xCO

ABL OxOE

ABH 0xCo

DL 0xCo

DOR 0xCO

Flags C:1,Z:0,1:1,D:0,B:1,V:0,N: 0

Buses SB=0xFB, DB=0xC0, ADL=0x0E, ADH=0xC0

AB..7

constant
generators

A8..15
189

ADL

Do..7

s ADH




JSR (0x20), T1 (PHI2)

Dispatcher T0: 0, /TO: 1, /T1X: 0, O/IR: 0, FETCH: 1, /ready: 0, WR: 0, ACRL1: 0, ACRL2: 0, T5: O,
Interrupts /NMIP: 1, /IRQP: 1, RESP: 0, BRK6E: 0, BRK7: 1, DORES: 0, /DONMI: 1

Extra Cycle Counter T1:1, TRES2: 1, /T2: 1, /T3: 1, /T4: 1, /T5: 1

Decoder 95: JSR (TX), 121: /IR6, 126: /IR7

Commands SUMS, ADD_SB7, ADD_SB06, PCH_ADH, PCL_ADL, ADH_ABH, ADL_ABL, SB_DB
ALU Carry In 0

DAA 0

DSA 0

Increment PC 1

Regs IR=0x20, PD=0x69, Y=0x00, X=0x05, S=0xFB, Al=0x00, BI=0xC0, ADD=0xC0,
PCL OxOF

PCH 0xC0

ABL OxOE

ABH 0xC0

DL 0x69

DOR 0xC0

Flags C:1,Z0,1:1,D:0,B:1,V:0,N: 0

Buses SB=0xC0, DB=0xCO, ADL=0x0F, ADH=0xCO

ADL

AB..7

constant
generaters

De..7

ADH

A8..15

190



Notes in the margins for future revisions of the book.

191



LDA imm (0xA9)

NOP

LDA  #A5

NOP
T0+2 Read
T Read

192




LDA (0xA9), TO2 (PHI1)

Component/Signal

State

Dispatcher

Interrupts

TO: 1, /T0: 0, /T1X: 1, 0/IR: O, FETCH: 1, /ready: 0, WR: 0, ACRL1: 1, ACRL2: 1, T5: 0, T6: 0,
ENDS: 0, ENDX: 1, TRES1: 0, TRESX: 1

/NMIP: 1, /IRQP: 1, RESP: 0, BRK6E: 0, BRK7: 1, DORES: 0, /DONMI: 1

Extra Cycle Counter

T1:0, TRES2: 0, /T2: 0, /T3: 1, /T4: 1, /T5: 1

Decoder 28: T2, 34: TO ANY, 64: LDA (T0), 65: ALL ODD (T0), 83: ABS/2, 121: /IR6, 128: IMPL
Commands IS’EZSL_RBD_LARBH S_i_é\HDliDSLLiI\A/IBSLASIg_Dﬁém ADD_SB06, ADH_PCH, PCH_ADH, ADL_PCL,
ALU Carry In 0

DAA 0

DSA 0

Increment PC

Regs IR=0xA9, PD=0xA9, Y=0x00, X=0x00, S=0xFD, Al=0xFE, BI=0xFE, ADD=0xFE, AC=0x0A
PCL 0x02

PCH 0xC0

ABL 0x02

ABH 0xC0

DL 0xA9

DOR OxFE

Flags C:0,Z0,1:1,D:0,B:1,V:0,N: 1

Buses SB=0xFE, DB=0xFE, ADL=0x02, ADH=0xCO

AB..7

constant
generaters

A8..15
193

ADL

De..7

ADH




LDA (0xA9), TO2 (PHI2)

Component/Signal State
Dispatcher TO: 1, /T0: 0, /T1X: 1, 0/IR: 1, FETCH: 0, /ready: 0, WR: 0, ACRL1: 1, ACRL2: 1, T5: 0, T6: 0,
P ENDS: 1, ENDX: 1, TRES1: 1, TRESX: 0
Interrupts /NMIP: 1, /IRQP: 1, RESP: 0, BRK6E: 0, BRK7: 1, DORES: 0, /DONMI: 1

Extra Cycle Counter

T1:0, TRES2: 0, /T2: 0, /T3: 1, /T4: 1, /T5: 1

Decoder 28: T2, 34: TO ANY, 64: LDA (T0), 65: ALL ODD (T0), 83: ABS/2, 121: /IR6, 128: IMPL
Commands SUMS, PCH_ADH, PCL_ADL, ADH_ABH, ADL_ABL, SB_DB, DL_DB, DBZ_Z, DB_N
ALU Carry In 0

DAA 0

DSA 0

Increment PC

Regs IR=0xA9, PD=0x00, Y=0x00, X=0x00, S=0xFD, Al=0xFE, BI=0xFE, ADD=0xFC, AC=0x0A
PCL 0x03
PCH 0xCO
ABL 0x02
ABH 0xCO
DL 0x00
DOR OxFE
Flags C:0,Z0,1:1,D:0,B:1,V:0,N: 1
Buses SB=0xFF, DB=0xFF, ADL=0x03, ADH=0xC0
N
G§ ADL
<«

constant
generators

De..7

i (DH

194




LDA (0xA9), T1 (PHI1)

Component/Signal

State

Dispatcher

T0: 0, /TO: 1, /T1X: O, O/IR: 1, FETCH: 0, /ready: 0, WR: 0, ACRL1: 1, ACRL2: 1, T5: 0, T6: 0,

ENDS: 1, ENDX: 1, TRES1: 1, TRESX: 0

Interrupts

Extra Cycle Counter

/NMIP: 1, /IRQP: 1, RESP: 0, BRK6E: 0, BRK7: 1, DORES: 0, /DONMI: 1

T1:1, TRES2: 1, /T2: 1, /T3:1, /T4: 1, /T5: 1

Decoder 121: /IR6, 128: IMPL

Commands S_S, DB_ADD, SB_ADD, SUMS, SB_AC, ADH_PCH, PCH_ADH, ADL_PCL, PCL_ADL, ADH_ABH,
ADL_ABL, SB_DB, DL_DB, DBZ_Z, DB_N

ALU Carry In 0

DAA 0

DSA 0

Increment PC

Regs IR=0xA9, PD=0x00, Y=0x00, X=0x00, S=0xFD, Al=0x00, BI=0x00, ADD=0xFC, AC=0x00
PCL 0x03

PCH 0xC0

ABL 0x03

ABH 0xC0

DL 0x00

DOR 0x00

Flags C:0,Z1,1:1,D:0,B:1,V:0,N: 0

Buses SB=0x00, DB=0x00, ADL=0x03, ADH=0xCO

AB..7

constant
generaters

195

A8..15

ADL

De..7




LDA (0xA9), T1 (PHI2)

Dispatcher Er?ug)'(qukE/;né) QH{JE/& 2 FETCH: 1, /ready: 0, WR: 0, ACRL1: 0, ACRL2: 1, T5: 0, T6: 0, ENDS: 0,
Interrupts /NMIP: 1, /IRQP: 1, RESP: 0, BRK6E: 0, BRK7: 1, DORES: 0, /DONMI: 1

Extra Cycle T1: 1, TRES2: 1, /T2: 1, /T3: 1, /T4: 1, /T5: 1

Counter

Decoder 121: /IR6, 128: IMPL

Commands SUMS, ADD_SB7, ADD_SB06, PCH_ADH, PCL_ADL, ADH_ABH, ADL_ABL, SB_DB

ALU Carry In 0

DAA 0

DSA 0

Increment PC 1

Regs IR=0xA9, PD=0xEA, Y=0x00, X=0x00, S=0xFD, Al=0x00, BI=0x00, ADD=0x00, AC=0x00
PCL 0x04

PCH 0xCO

ABL 0x03

ABH 0xCO

DL OXEA

DOR 0x00

Flags C:0,Z1,1:1,D:0,B:1,V:0,N: 0

Buses SB=0x00, DB=0x00, ADL=0x04, ADH=0xCO

ADL

no..7

constant
generaters

De..7

DB
ADH

A8..15

196




Next NOP T0+2 PHI1

Component/Signal

Dispatcher

Interrupts
Extra Cycle Counter

Decoder

Commands
ALU Carry In
DAA

DSA
Increment PC
Regs

PCL

PCH

ABL

ABH

DL

DOR

Flags

Buses

State

T0: 1, /T0: 0, /T1X: 1, 0/IR: O, FETCH: 1, /ready: 0, WR: 0, ACRL1: 0, ACRL2: 1, T5: 0, T6: O,
ENDS: 0, ENDX: 1, TRES1: 0, TRESX: 1

/NMIP: 1, /IRQP: 1, RESP: 0, BRK6E: 0, BRK7: 1, DORES: 0, /DONMI: 1

T1:0, TRES2: 0, /T2: 0, /T3: 1, /T4: 1, /T5: 1

28: T2, 34: TO ANY, 44: INC NOP (TX), 83: ABS/2, 106: LSR ROR DEC INC DEX NOP (4x4
bottom right) (TX), 128: IMPL

S_S, DB_ADD, SB_ADD, SUMS, ADD_SB7, ADD_SB06, ADH_PCH, PCH_ADH, ADL_PCL,
PCL_ADL, ADH_ABH, ADL_ABL, SB_DB

IR=0xEA, PD=0xEA, Y=0x00, X=0x00, S=0xFD, Al=0x00, BI=0x00, ADD=0x00, AC=0x00
0x04

0xCO

0x04

0xCO

OxEA

0x00

C:0,Z1,1:1,D:0,B:1,V:0,N: 0

SB=0x00, DB=0x00, ADL=0x04, ADH=0xCO

197



Notes in the margins for future revisions of the book.

198



NOP (OxEA)

nop
nop
nop

T0+2

’ﬂ"‘ﬁ@#

RV S G 3

AB.A5

Read

T

Read

199




NOP (0xEA), T02 (PHI1)

Component/Signal State
Dispatcher T0: 1, /T0: 0, /T1X: 1, 0/IR: 0, FETCH: 1, /ready: 0, WR: 0, ACRL1: 1, ACRL2: 0, T5: 0,
P T6: 0, ENDS: 0, ENDX: 1, TRES1: O, TRESX: 1
Interrupts /NMIP: 1, /IRQP: 1, RESP: 0, BRK6E: 0, BRK7: 1, DORES: 0, /DONMI: 1

Extra Cycle Counter

T1:0, TRES2: 0, /T2: 0, /T3: 1, /T4: 1, /T5: 1

28: T2, 34: TO ANY, 44: INC NOP (TX), 83: ABS/2, 106: LSR ROR DEC INC DEX NOP

Decoder (4x4 bottom right) (TX), 128: IMPL

Commands S_S, DB_ADD, SB_ADD, SUMS, ADD_SB7, ADD_SB06, ADH_PCH, PCH_ADH,
ADL_PCL, PCL_ADL, ADH_ABH, ADL_ABL, SB_DB

ALU Carry In 0

DAA 0

DSA 0

Increment PC 0

IR=0xEA, PD=0xEA, Y=0x00, X=0x00, S=0xFD, Al=0xFE, BI=0xFE, ADD=0XFE,

Regs AC=0x00

PCL 0x05

PCH 0xCO

ABL 0x05

ABH 0xCO

DL OXEA

DOR OxFE

Flags C0,Z1,1:1,D:0,B:1,V:0,N: 0

Buses SB=0xFE, DB=0xFE, ADL=0x05, ADH=0xCO
N
S ADL
<

constant
generators
(@)
()]
e
o = of
data
lawch
De..7

O
@
2y 34

-

ADH

A8..19

200




NOP (0xEA), T02 (PHI2)

Component/Signal

State

Dispatcher

T0: 1, /T0: 0, /T1X: 1, O/IR: 1, FETCH: 0, /ready: 0, WR: 0, ACRL1: 1, ACRL2: 1, T5: 0,
T6: 0, ENDS: 1, ENDX: 1, TREST: 1, TRESX: 0

Interrupts

/NMIP: 1, /IRQP: 1, RESP: 0, BRK6E: 0, BRK7: 1, DORES: 0, /DONMI: 1

Extra Cycle Counter

T1:0, TRES2: 0, /T2: 0, /T3: 1, /T4: 1, /T5: 1

28: T2, 34: TO ANY, 44: INC NOP (TX), 83: ABS/2, 106: LSR ROR DEC INC DEX NOP

Decoder (4x4 bottom right) (TX), 128: IMPL

Commands SUMS, PCH_ADH, PCL_ADL, ADH_ABH, ADL_ABL
ALU Carry In 0

DAA 0

DSA 0

Increment PC 0

IR=0xEA, PD=0x00, Y=0x00, X=0x00, S=0xFD, Al=0xFE, BI=0xFE, ADD=0xFC,

Regs AC=0x00

PCL 0x05

PCH 0xCO

ABL 005

ABH 0xCO

DL OXEA

DOR OXFE

Flags C:0,Z1,1:1,D:0,B:1,V:0,N: 0

Buses SB=0xFF, DB=0xFF, ADL=0x05, ADH=0xCO
N
s ADL
T

constant
generaters

A8..15

201

De..7




NOP (0xEA), T1 (PHI1)

Component/Signal State

Dispatcher T0: 0, /T0: 1, /T1X: 0, O/IR: 1, FETCH: O, /ready: 0, WR: 0, ACRL1: 1, ACRL2: 1, T5: 0, T6: 0,
P ENDS: 1, ENDX: 1, TRES1: 1, TRESX: O

Interrupts /NMIP: 1, /IRQP: 1, RESP: O, BRK6E: 0, BRK7: 1, DORES: 0, /DONMI: 1

Extra Cycle Counter

T1:1, TRES2: 1, /T2: 1, /T3: 1, /T4: 1, /T5: 1

Decoder 44: INC NOP (TX), 106: LSR ROR DEC INC DEX NOP (4x4 bottom right) (TX), 128: IMPL
Commands Z_SLB\%{DD SB_ADD, SUMS, ADH_PCH, PCH_ADH, ADL_PCL, PCL_ADL, ADH_ABH,
ALU Carry In 0

DAA 0

DSA 0

Increment PC

Regs IR=0XEA, PD=0x00, Y=0x00, X=0x00, S=0xFD, Al=0xFF, BI=0xFF, ADD=0xFC, AC=0x00
PCL 0x05
PCH 0xCO
ABL 0x05
ABH 0xCO
DL OXEA
DOR OxFF
Flags C0,Z1,1:1,D:0,B:1,V:0,N: 0
Buses SB=0xFF, DB=0xFF, ADL=0x05, ADH=0xC0
N
S ADL
<«

constant
generaters

A8..15
202

De..7

ADH




NOP (0xEA), T1 (PHI2)

Component/Signal

State

Dispatcher

T0: 0, /T0: 1, /T1X: 0, 0/IR: O, FETCH: 1, /ready: 0, WR: 0, ACRL1: 1, ACRL2: 1, T5: 0, T6: O,
ENDS: 0, ENDX: 1, TRES1: 0, TRESX: 1

Interrupts

/NMIP: 1, /IRQP: 1, RESP: 0, BRK6E: 0, BRK7: 1, DORES: 0, /DONMI: 1

Extra Cycle Counter

T1:1, TRES2: 1, /T2: 1, /T3:1, /T4: 1, /T5: 1

Decoder 44: INC NOP (TX), 106: LSR ROR DEC INC DEX NOP (4x4 bottom right) (TX), 128: IMPL
Commands SUMS, ADD_SB7, ADD_SB06, PCH_ADH, PCL_ADL, ADH_ABH, ADL_ABL, SB_DB

ALU Carry In 0

DAA 0

DSA 0

Increment PC

Regs IR=0xEA, PD=0xEA, Y=0x00, X=0x00, S=0xFD, Al=0xFF, BI=0xFF, ADD=0xFE, AC=0x00
PCL 0x06

PCH 0xC0

ABL 0x05

ABH 0xC0

DL OxEA

DOR OxFF

Flags C:0,Z1,1:1,D:0,B:1,V:0,N: 0

Buses SB=0xFC, DB=0xFC, ADL=0x06, ADH=0xCO

AB..7

ADL

constant
generators

Do..7

ADH

A8..15
203




Next NOP T0+2 PHI1

Component/Signal State
Dispatcher E&SS%OERID/I(D; }R(é/sl:l gTFFEEg(—iJ /ready: 0, WR: 0, ACRL1: 1, ACRL2: 1, T5: 0, T6: O,
Interrupts /NMIP: 1, /IRQP: 1, RESP: 0, BRK6E: 0, BRK7: 1, DORES: 0, /DONMI: 1
Extra Cycle Counter T1:0, TRES2: 0, /T2: 0, /T3: 1, /T4: 1, /T5: 1
Decoder 28:T2, 34: TO ANY, 44: INC NOP (TX), 83: ABS/2, 106: LSR ROR DEC INC DEX NOP (4x4
bottom right) (TX), 128: IMPL
Commands ’S;CSLﬁBD,LAQBHSj,é\HDI'DADS&I\A/I;LASI‘DB%EW ADD_SB06, ADH_PCH, PCH_ADH, ADL_PCL,
ALU Carry In 0
DAA 0
DSA 0
Increment PC 0
Regs IR=0xEA, PD=0xEA, Y=0x00, X=0x00, S=0xFD, Al=0xFE, BI=0xFE, ADD=0xFE, AC=0x00
PCL 0x06
PCH 0xC0
ABL 0x06
ABH 0xC0
DL OxEA
DOR OxFE
Flags C:0,Z1,1:1,D:0,B:1,V:0,N: 0
Buses SB=0xFE, DB=0xFE, ADL=0x06, ADH=0xCO

204



Notes in the margins for future revisions of the book.

205



Afterword

If you have read the whole book and even figured out the 6502, it does not mean that the pro-
cessor has revealed all its secrets to you. There is an opinion that even the developers of the
6502 did not understand how their processor works. To be honest we don't understand how it
works either :)

To be more exact, if we take every separate block it's quite clear how it works. But when we have
to analyze work of the whole processor it becomes difficult to understand it. This is especially
true for boundary conditions, such as RDY mode, instruction boundaries or interrupt overlap-

ping.

The given examples of instructions work allows to learn a little more but in general it is possible
to investigate details of 6502's work till the old age. And that's a good thing )

In the process of preparing this revision of the book, auxiliary tools such as the 6502 simulator
and a fully working 6502 circuit in Logisim were developed. The authors are confident that these
tools will be useful to all 6502 fans, its researchers, or teachers of circuit engineering in educa-
tional institutions. All materials can be downloaded from the links below.

206



Links

e  Visual6502.org
e 6502.0rg

e  US3991307A - Integrated circuit microprocessor with parallel binary adder having on-the-fly
correction to provide decimal results - Google Patents (https://patents.google.com/patent/
US3991307A)

®  emu-russia/breaks: Nintendo Entertainment System (NES) / Famicom / Dendy chip revers-
ing (github.com) (https://github.com/emu-russia/breaks)

° Klaus2m5/6502 65C02 functional tests: Tests for all valid opcodes of the 6502 and 65C02
processor (github.com) (https://github.com/Klaus2m5/6502_65C02_functional_tests)

®  6502.0rg - View topic - 6509 dissection: IDKFA (http://forum.6502.org/viewtopic.php?
p=90782#p90782)

® 6502 Topology source (https://drive.google.com/drive/
folders/1eDirYKJ6KSHD8MIrFj16GXP8oLAIRs9c?usp=sharing)

®  |mage of Bender © Fox Interactive

207


https://patents.google.com/patent/US3991307A
https://patents.google.com/patent/US3991307A
https://github.com/emu-russia/breaks
https://github.com/emu-russia/breaks
https://github.com/Klaus2m5/6502_65C02_functional_tests
https://github.com/Klaus2m5/6502_65C02_functional_tests
http://forum.6502.org/viewtopic.php?p=90782#p90782
https://drive.google.com/drive/folders/1eDirYKJ6KSHD8MIrFj16GXP8oLAIRs9c?usp=sharing

Author's Team:

andkorzh: Schematics for Logisim
HardWareMan: Technical advice, Verilog
org: Transistor circuits, simulation
Editor-in-Chief: org

Feedback: emu-russia Discord (https://discord.ga/WJcvgyCHkh), GitHub
(https://github.com/emu-russia/breaks)

© 2022, emu-russia

Each author of the book has the following privileges:
® The author may refer to this book as "my book", without attributing joint authorship;

® The author may sell or otherwise market this book on his or her own, without notice or sharing the
profits among the other authors;

® for all other questions, delegate to org.

208


https://discord.gg/WJcvqyCHkh
https://github.com/emu-russia/breaks

This book contains descriptions of all MOS 6502 circuits.

If you are good at digital circuitry, the 6502 processor will reveal all its secrets
to you.

The online version of the book is free, the printed version can be ordered from
various offices that print the pdf on paper.



