
1

Breaking NES Book

6502 Core

A book on how the MOS 6502 processor works, but basically just a copy
of the wiki from the GitHub.

Translated with www.DeepL.com/Translator (free version)

Rev. A2

2

What to say...

Apparently it is time to summarize all the research on the 6502 processor in the form of a book.

The necessity to write a book arose because of the need to fill up the wiki on the Breaking NES project
to the end, but it needs additional motivation. The book is a good way :smiley:

Another need is that as of now (2021) there are still no 6502 emulators that replicate exactly all of its op-
erations, especially the so-called undocumented instructions (which are really just Undefined Behavior of
its operation).

Foreword

3

Contents

• Pinout
• Clock

Top Part

• Instruction Register
• Extended Cycle Counter
• Decoder
• Pre-decode
• Interrupt Processing
• Random Logic

• Registers Control
• ALU Control
• Program Counter Control
• Bus Control
• Dispatcher
• Flags Control
• Flags
• Branch Logic

• Context Controls

Bottom Part

• Address Bus
• Data Bus
• Registers
• ALU
• Program Counter

4

Decoder

The decoder 6502 is an ordinary demultiplexer, but a very large one. The formula for the demulti-
plexer is 21-to-130. Sometimes the 6502 instruction decoder is also called a PLA.

Topologically, the decoder is divided by ground lines into several groups, so we'll stick to the
same division, for convenience.

The input lines are:

• /T0, /T1X: current cycle for short (2 clock) instructions. These signals are output from dispatch
logic.

• /T2, /T3, /T4, /T5: current cycle for long instructions. Signals are output from extended cycle
counter.

• /IR0, /IR1, IR01: the lower bits of the operation code from instruction register. To reduce the
number of lines 0 and 1 bits are combined into one control line IR01.

• IR2-IR7, /IR2-/IR7: direct and inverse values of the remaining bits. The direct and inverse forms
are needed to check the bit for 0 and 1.

The decoder logic is based on the exclusion principle. Schematically, each output is a multi-input
NOR element, which means that if at least one of the inputs has a 1, the whole line will NOT work.

That is, the decoder outputs are not in inverse logic (as is usual), but in direct logic.

5

Table of 6502 opcodes (for reference):

6

Special Lines

Additional logical operations are applied to some decoder outputs, which although territorially
are in the decoder area, are actually part of random logic. Most likely this logic got into the de-
coder simply because it was more convenient to split the connections that way.

List:

• Internal Push/Pull line: a special (129th) line that does not extend beyond the decoder. It is
used to "cut off" Push/pull instructions when selecting instructions. It is used in three lines: 83,
90, and 128.

• /PRDY: this line goes to decoder line 73 (Branch T0)

• IR0: normally the common signal IR01 is used to check the two lowest bits of the operation
code, but exclusively for the 128th line (IMPL), IR0 is used (IR0 is not included in the mask for
the table below).

PLA Contents

Group N Mask value (Raw bits)
Decoded
mask val-
ue

Cycle
(T)

Comments Where to use

A

A01 0 000101100000100100000 100XX100 TX STY

A02 1 000000010110001000100 XXX100X1 T3 OP ind, Y

A03 2 000000011010001001000 XXX110X1 T2 OP abs, Y

A04 3 010100011001100100000 1X001000 T0 DEY INY

A05 4 010101011010100100000 10011000 T0 TYA

A06 5 010110000001100100000 1100XX00 T0 CPY INY

B

B01 6 000000100010000001000 XXX1X1XX T2 OP zpg, X/Y & OP abs, X/Y

B02 7 000001000000100010000 10XXXX1X TX LDX STX A<->X S<->X

B03 8 000000010101001001000 XXX000X1 T2 OP ind, X

B04 9 010101011001100010000 1000101X T0 TXA

B05 10 010110011001100010000 1100101X T0 DEX

B06 11 011010000001100100000 1110XX00 T0 CPX INX

B07 12 000101000000100010000 100XXX1X TX STX TXA TXS

B08 13 010101011010100010000 1001101X T0 TXS

B09 14 011001000000100010000 101XXX1X T0 LDX TAX TSX

B10 15 100110011001100010000 1100101X T1 DEX

B11 16 101010011001100100000 11101000 T1 INX

B12 17 011001011010100010000 1011101X T0 TSX

B13 18 100100011001100100000 1X001000 T1 DEY INY

B14 19 011001100000100100000 101XX100 T0 LDY

B15 20 011001000001100100000 1010XX00 T0 LDY TAY

7

TBD: The rest of the decoder groups are here.

8

What Raw bits mean

If you think of a decoder as a 21x130 ROM, where each bit represents a
transistor, then the Raw bits value will represent one line of the decod-
er. This is why it is called the mask value.

For example, the picture shows the 5th line of the decoder. The bit
counting starts from bottom to top. 0 means no transistor, 1 means pre-
sent.

Online Decoder

You can use an online decoder to highlight opcodes: http://
breaknes.com/files/6502/decoder.htm (You can also find it here: https://
github.com/emu-russia/breaks/blob/master/Docs/6502/decoder.htm)

In the Raw bits field you can insert the mask value from the table above
and when you press the Make IR Mask button you will get the decoded
mask value (e.g. 11X00X00). The decoded mask value can be inserted in-
to the IR field and when the Decode button is pressed, the opcodes that
correspond to the specified IR mask will be highlighted in the table.

Branch T0 Skip

From pin RDY a special line /PRDY comes through the delay line. If the processor was not ready
when the previous instruction finished, then if the next instruction is a conditional branch, its cycle
0 (T0) is skipped.

The meaning of this operation is not known yet.

Why the decoder is so big and scary

Actually, there is nothing scary about it.

The decoder was compiled according to the requirements of random logic. Random logic is divid-
ed into several parts (domains) and each part corresponds to its own zone in the decoder, which
was specially chosen so that the necessary opcodes were processed.

In other words - it is not random logic that adjusts to decoder, but vice versa. The impression that
the decoder is "more important" is formed simply because it is above random logic.

http://breaknes.com/files/6502/decoder.htm
http://breaknes.com/files/6502/decoder.htm
https://github.com/emu-russia/breaks/blob/master/Docs/6502/decoder.htm
https://github.com/emu-russia/breaks/blob/master/Docs/6502/decoder.htm

9

10

prc. 6502 rub.

The book contains a description of all the MOS 6502 circuits, Python simulation code and oth-
er exclusive material.

This book is the second (in order of creation) in the Breaking NES series of books. The first,
Breaking NES PPU, is already available.
The online version of the book is free, the print version can be ordered from various offices
that print from pdf on paper.

