SUPERMON 816 MACHINE LANGUAGE MONITOR

By BigDumbDinosaur

Supermon 816 is a full-featured machine language monitor that is adaptable to most computers that
are powered by the Western Design Center’s W65C816S 16-bit microprocessor if operating in
native mode. There is no support for 65C02 emulation mode operation.

Supermon 816 includes the following capabilities:

65C816 instruction assembly and disassembly;
Memory compare, copy, dump, edit and fill functions;
Microprocessor register dump and edit functions;
Program execution functions;

Number base conversion;

Motorola S-record data loader.

NSNS

Supermon 816 is a salute to Jim Butterfield (1936-2007), who wrote the SuperMon machine
language monitor for the Commodore PET/CBM line of computers in the late 1970s, and
subsequently adapted his code to the Commodore 64, naming that version SuperMon 64.
Commodore themselves bundled SuperMon 64 with their Macro Assembler Development System
(MADS) and integrated a customized version of SuperMon into the Commodore 128's firmware.
Fiscal Information Inc., developers of the Lt. Kernal SCSI hard drive subsystem for the C-64 and
C-128, created a disk editing tool called LKMON that was built around the SuperMon core.

In 1991, BCS Technology Limited developed an enhanced machine code monitor for the Uni-FI®
terminal server, which was powered by the WDC 65C02. This monitor, although scratch-written,
included all of the features of Supermon 64, recognized the enhanced 65C02 instruction set,
supported multiple number radices, and added Motorola S-record loading capabilities to facilitate
firmware development.

In early 2009, BCS Technology Limited began work on a custom 65C816-powered machine
controller for a client and needed to integrate a machine language monitor into the prototype’s
firmware for debugging and testing purposes. Initially, that monitor was an adaptation of the
earlier 65C02 monitor. However, the amount of rework required to fully support a 65C816
system with extended memory was impractical. The decision was made to develop a completely
new, native mode monitor.

Although Supermon 816 was developed from a blank canvas, with no vestiges of Jim Butterfield’s
code, it was decided to keep the SuperMon name alive, since Supermon 816's general operation
and user interface is similar to that of the original SuperMon.

Supermon 816 is copyrighted software and may be redistributed with limitations. Please see page
30 for more information.

SYSTEM INTEGRATION

This verison of Supermon 816 will function on any 65C816 system that has a native mode
operating environment and a compatible console (the source code includes support for a WYSE
60 terminal—editing will be required to support other console types, such as a VT100). A
secondary (auxiliary) hardware input port is required in order to use the Motorola S-record loader.
This section will explain what must be done to successfully integrate Supermon 816 with your
hardware and operation system.

Supermon 816 is distributed as source code that is structured to assemble in the Kowalski
65C02/65C816 assembler, version 1.3.4 or later (the Kowalski assembler/simulator may be
downloaded from https://sbc.rictor.org/kowalski.html). Prior to assembly, some
editing of the source code must be performed in order to adapt Supermon 816 to the target system.
It is assumed that you know how to edit and assemble source code files, and if necessary burn the
resulting object code into ROM. Please carefully read this section before attempting to assemble
Supermon 816, and be sure to make a backup copy of the source code prior to editing it.

In following discussion, 65C816 registers will be symbolized as follows:

Symbol | Register

A accumulator (8 bits)

.C accumulator (16 bits)
X X-index
Y Y-index

DB data bank

DP direct page pointer

PB program bank

PC program counter

SP stack pointer

SR status register

Additional information on register symbology will be given later on.

Near the top of the source code are symbols that set various values required during assembly.
These values must be edited as required to integrate Supermon 816 into your system. Please refer
to the following table for details.

Page 3 of 30

Symbol Description

origin | This is the starting address for assembly. Supermon 816's “cold start” entry
point, referred to in the source code as jmon, has this address.

vecexit | This is the address to which Supermon 816 will go when the X (exit) command
is issued. Thatis, vecexit is an exit vector that returns control to the operating
system. Supermon 816 will do a long jump (JML) to this address, which means
that vecexit is interpreted during assembly as a 24 bit address.

vecbrki | This is a vector used by Supermon 816 to “wedge” into your operating system’s
BRK handler. Supermon 816 will modify this vector so that execution of a BRK
instruction is intercepted and the microprocessor registers are captured. Your
operating system’s BRK service routine front end should jump through this vector
after pushing the registers, using the following code:

ibrk phb ;save DB
phd ;save DP
rep #%00110000 ;16 bit registers
pha ;save accumulator
phx ;save index X
phy ;save index Y
jmp (vecbrki) ;jump through vector

The code starting at 1brk would be pointed to by the 65C816 hardware vector
at $OOFFE6. vecbrki must be in bank $00.

When a G or J command (described later) is issued to Supermon 816 to execute
machine code, the above sequence will be reversed before a jump is made to the
code to be executed. Upon exit from Supermon 816, the original address at
vecbrki will be restored.

If your BRK handler’s front end does not conform to the above you will have to
modify Supermon 816 to accommodate the differences. The most likely needed
changes will be in the order in which the 65C816’s registers are pushed to the
stack.

hwstack | This is the address of the top of the 65C816’s hardware stack. Supermon 816
will initialize the stack pointer to this address when entered through the cold start
vector at jmon. The stack pointer will be undisturbed when entry into Supermon
816 is through jmonbrk, which is the BRK entry point.

Page 4 of 30

Symbol

Description

zeropage

zeropage defines the start of direct page memory used by Supermon 816. Be
sure that no conflict occurs with other software, especially interrupt service
routines.

getcha

getcha refers to an operating system API (application programming interface)
call that returns a datum (byte) from the console in .A. That is, Supermon 816
will call getcha to get typed input. Supermon 816 expects that getcha is a
non-blocking subroutine and returns with carry clear to indicate that a datum is
in . A, or with carry set to indicate that no datum was available. getcha will
be called with a JSR instruction. Supermon 816 also expects .X and .Y to be
preserved upon return from getcha. You may have to modify Supermon 816
at all calls to getcha if your "get datum" API works differently than described.

getchb

getchb refers to an operating system API call that returns a datum (byte) from
a secondary or auxiliary input port in .A. Supermon 816 call getchb to get
input during an S-record load operation. Supermon 816 expects that getchb is
a non-blocking subroutine and returns with carry clear to indicate that a datum is
in . A, or with carry set to indicate that no datum was available. getchb will
be called with a JSR instruction. Supermon 816 also expects . X and .Y to be
preserved upon return from getchb. You may have to modify Supermon 816
at all calls to getchb if your "get datum" API works differently than described.

putcha

putcha refers to an operating system API call that prints one character to your
console screen. The character to be printed will be in . A, which will be set to
8-bit width when the API call is made. Supermon 816 expects that putcha will
block until the character can be processed. putcha will be called with a JSR
instruction. Supermon 816 also expects . X & .Y to be preserved upon return
from putcha. You may have to modify Supermon 816 at all calls to putcha
if your "put character” API works differently than described.

chanbctl

chanbctl refers to an API call in BCS Technology Limited’s “universal” NXP
multichannel UART driver that enables or disables the TIA-232 channel B
receiver. If this call is not present in your system's API then it will be necessary
to comment out references to it.

stopkey

Supermon 816 will poll for a "stop key" during display operations, such as code
disassembly and memory dumps, so as to halt the display and return control to the
Supermon 816 prompt. stopkey must be defined with the ASCII value that the
"stop key" will emit when typed. The polling is via a call to getcha (described
above). The default stopkey definition of $03 is for ASCII <ETX> or
[Ctrl-C]. An alternative definition could be $1B, which is ASCII <ESC> or
[ESC].

Page 5 of 30

Symbol Description

ibuffer | Supermon 816 will use these locations for workspace in various ways. These
auxbuf buffers may be located anywhere in memory that is convenient, as long as they
are in the same bank in which Supermon 816 is running. The buffers are
stateless, which means that unless Supermon 816 has control of your system they
may be overwritten without consequence. Only the location of ibuffer should
be edited, unless there is a compelling reason to relocate auxbuf. auxbuf
occupies 33 bytes.

Page 6 of 30

SUPERMON 816 OPERATION

This section will discuss Supermon 816’s operation.

Supermon 816 is started by jumping to the address at which it was loaded—the “cold start” entry
point, which is defined in the source code as jmon. Upon initial startup, the monitor will set up

some vectors, display a banner, dump the 65C816's registers and print a dot (.), which is the
monitor’s input prompt.

The register dump will appear as follows when the monitor is started:

PB PC NVmxDIZC .C X .Y SP DP DB
; XX 0000 00000000 0000 0000 0000 xxxx xxxx 00

The above values are typical. SP and DP will reflect the hwstack and zeropage values,
respectively, that were set as previously described. Register heading meanings are as follows:

Heading | Register

PB 8-bit program bank

PC 16-bit program counter

NVmxDIZC | status flags

.C 16-bit accumulator

.X 16-bit X-index

Y 16-bit Y-index

SP 16-bit stack pointer

DP 16-bit direct page pointer

DB 8-bit data bank

The register dump is retrieved from a set of “shadow” locations stored on direct page, and
excepting the status register, is in hexadecimal. The shadow values are loaded into the 65C816's
registers when the monitor is commanded to execute a program. If the program returns control
to the monitor when it is finished, the 65C816's registers will be copied to shadow storage and the
register dump will reflect what the registers contained at the time the monitor assumed control of
the system.

Page 7 of 30

For convenience, the status register is displayed in bitwise fashion, rather than as a hexadecimal
number, as often seen in other monitors. The m and X bits in the status register refer to the
accumulator/memory and index register sizes, respectively.

All monitor commands commence with a single character, followed in some cases by whitespace
or comma-delimited arguments that are interpreted as addresses or data, depending on context.
Recognized commands are:

Command | Function

A Assemble 65C816 machine code

Compare memory ranges

Disassemble 65C816 machine code

Fill memory range

Execute 65C816 code (JMP)

Search memory range

Execute 65C816 code as subroutine (JSR)
Load 65C816 machine code

Display memory range

Display 65C816 registers

Copy memory range

X |- | | =E|r{fc|xT|o| =M |0 |O

Exit Supermon 816

\"

Display and edit memory

; Display and edit 65C816 registers

Supermon 816 internally processes all numeric input as 32 bit integers regardless of the actual
value entered. A number entered without a leading radix symbol is assumed to be hexadecimal.
Other bases are supported by preceding the number with an appropriate radix symbol, which will
cause an “on-the-fly” conversion to occur:

Page 8 of 30

Symbol | Radix
% Binary
@ Octal
+ Decimal
$ Hexadecimal

For example, the 65C816's SEP instruction manipulates status register bits. Hence:
SEP #%00110000

is generally more convenient to enter than:
SEP #$30

If a radix is used there must be no space between it and the number itself.

Supermon 816 includes a number conversion function as part of its command set. Entering a radix
symbol at the input prompt along with a number that is valid for that radix will display the number
in all four radices. For example, typing:

+12345 [CR]
at the prompt will result in the following display:

$3039

+12345
@00030071
%11000000111001

[CR] represents the return or enter key on your console keyboard. The largest decimal number
that may be converted in this fashion is (2%) -1 or 4,294,967 ,295.

Many functions accept one or more addresses as command arguments. Hence such arguments may
be expressed as eight-, 16- or 24-bit values in any radix; most functions that display addresses will
display them as 24-bit values. During code assembly, immediate mode instructions, excepting
REP and SEP, will accept either eight or 16 bit operands.

Page 9 of 30

Most input is not case-sensitive and extra whitespace between commands and arguments will be
ignored. In the event Supermon 816 cannot process your input due to faulty syntax an *ERR
diagnostic will be printed on your console and you will be prompted for another command.

The following pages will cover each Supermon 816 function in detail.

Page 10 of 30

Assemble 65C816 Machine Code
Syntax: A <addr> <mnem> [<oper>]

This function assembles a 65C816 machine instruction at address <addr>, using the
mnemonic <mnem> and the operand <oper>. <mnem> must be an instruction
mnemonic as described in the assembly language standard promulgated in the Western
Design Center (WDC) 65C816 data sheet. Alternate mnemonics, such as DEA in place
of DEC (decrement the accumulator) or BLT (branch if less-than) in place of BCC, are not
supported.

Upon successful assembly, the instruction will be disassembled and displayed in place of
your typed input, and the assembler will prompt with the address of the next instruction
to be assembled. Pressing [CR] at the prompt without entering another instruction will
discontinue assembly and return you to the command prompt. An assembly error, for
example, a branch that is out of range, will cause the monitor to re-prompt with the same
assembly address.

The way in which the assembler interprets and assembles some instructions warrants
further discussion.

® 65C816 immediate mode (#) instructions other than PEA, REP and SEP can operate
on eight or 16 bit operands, depending on the condition of the m and X bits in the
status register. Supermon 816's assembler always resolves operands to the least
number of bits that is valid for the instruction being assembled. Hence if an
immediate mode operand can be resolved to an eight bit quantity, the instruction will
be assembled with an eight bit operand. For example:

a 002000 LDA #$0030
will always be assembled and stored into memory as:

>002000 A9 30
It is possible to force the assembler to “promote” an eight bit immediate mode
operand to 16 bits by preceding the # symbol with !, a feature referred to as “forced
long immediate.” For example, entering:

a 002000 LDA !#$30

will promote the operand to 16 bits and the instruction will be generated as:

>002000 A9 30 00

Page 11 of 30

The next assembly address will be $002003 instead of $002002.

It is important to note that the assembler does not “know” whether a 16 bit
immediate mode operand is appropriate in the context of the program being
assembled. It is your responsibility to keep track of register sizes as you enter
instructions.

Attempting to use forced long immediate with the PEA, REP and SEP instructions
will fail with a syntax error. PEA is automatically assembled with a 16 bit operand.

In syntactically-correct symbolic assemblers, the instruction ASL A would mean
“left-shift the accumulator,” the A operand being a default symbol for the
accumulator. The monitor’s assembler will interpret such an instruction as ASL
$0A. Hence implied accumulator instructions must be entered without an operand.
Similarly, the symbolic assembler instruction DEC A (decrement the accumulator)
must be entered as DEC without an operand.

The COP instruction is a two byte instruction, the second byte being referred to as
the “signature.” Hence the assembler requires that COP be entered with an eight bit
operand. The 65C816 data sheet states that signature values from $80 to $FF are
“reserved.” The assembler does not enforce this distinction and accepts any
signature from $00 to $FF.

Recommended WDC assembler syntax permits assembly of the JMP and JSR
instructions with a 24 bit address, for example:

a 002000 JMP $A4031F
a 002004 JSR $A40359

The WDC syntax also describes the mnemonics JML and JSL as “long” forms of
JMP and JSR whose operands are always resolved to a 24-bit address.

For technical reasons, Supermon 816 cannot accept a 24-bit address with the JMP
and JSR instructions. If you wish to assemble a long jump instruction you must use
JML in place of JMP, and JSL in place of JSR. For example:

a 002000 JML $A4031F
a 002004 JSL $A40359

Page 12 of 30

JML and JSL operands are always resolved to 24 bits, which means that:
a 002000 JML $1

will be assembled and stored into memory as:
>002000 5C 01 00 00

and the next assembly address will be $002004.

As a reminder, if you call a subroutine with JSL you must exit that subroutine with
RTL, not RTS.

The MVN and MVP copy instructions have an irregular syntax. These instructions
must entered with two eight bit operands, the first operand representing the bank
from which bytes will be copied (source bank), and the second operand representing
the bank into which the bytes will be copied (destination bank). For example, the
instruction:

a 002000 MVN $02 $03
will be assembled and stored into memory as:
>002000 54 03 02
The above instruction will be disassembled as:
002000 54 03 02 MVN $02,$03

and when executed, will cause the 65C816 to copy bytes from bank $02 to bank
$03. During instruction entry, the operands may be separated with whitespace or
a comma. The official WDC assembler syntax uses a comma.

The syntax described for the PEA and PEI instructions in the Lichty and Eyes
publication Programming the 65816 is not consistent with the actual behavior of
these instructions. PEA is an immediate mode instruction that pushes its operand to
the stack as a word (16 bit value). Despite the mnemonic’s meaning (Push Effective
Address), the operand is an assembly-time constant that can represent data of any

type.

PETI interprets its operand as a contiguous pair of direct page locations from which
a word will be loaded and pushed to the stack.

Page 13 of 30

Despite the mnemonic’s meaning (Push Effective Indirect), the word pushed to the
stack is not obtained via indirection—it is loaded from the direct page address that
is the instruction’s operand.

In an effort to be consistent with the way in which PEA and PEI behave, they are
treated as immediate mode and direct page instructions, respectively. Hence PEA
must be entered as:

PEA #<oper>

where <oper> is anything that can be resolved to 16 bits—PEA #3$01 is
acceptable, as the monitor will promote the operand to 16 bits during assembly.

PEI must be entered as:
PEI <dp>
where <dp> is an eight bit direct page address.

® All versions of the 65C816 produced to date treat the WDM (William D. Mensch)
“place-holder” instruction as a two-byte NOP. Hence WDM must be entered with an
eight bit operand.

Usage examples: a 042000 lda #%0000001011111101
a 042003 sta 0a0403
a 042007 pea #@377
a 04200A ldx #+10

In the above, note that code entry is not case-sensitive and operands may be entered in
any of the four recognized number bases—recall that hex is the default if no radix is
specified.

Page 14 of 30

Compare Memory Ranges
Syntax: C <addr1> <addr2> <addr3>

This function compares memory starting at address <addr1> and ending at address
<addr2> inclusive, to memory starting at address <addr3>. The range set by
<addri> and <addr2> may span banks. <addri1> must be equal to or lower than
<addr2> or else an error will occur. The “equal to or lower” test is a 24-bit
comparison. <addr3> may overlap the range set by <addr1> and <addr2> without
causing an error.

The comparison begins by comparing the byte at <addr1> to the byte at <addr3>. If
they are different, <addri> will be printed to the console as a 24-bit hexadecimal
number. Next, <addri>+1 will be compared to <addr3>+1, <addri>+2 to
<addr3>+2, and so forth. The comparison will stop after <addr2> has been checked.
The comparison operation can be halted at any time by striking the display “stop key”
that has been defined with the stopkey symbol in the Supermon 816 source code.

Usage example: ¢ 002000 002005 003000

Page 15 of 30

Disassemble 65C816 Machine Code
Syntax: D [<addri1> [<addr2>]]

This function disassembles and displays 65C816 machine instructions as mnemonics and
operands. If two arguments are entered, the range set by <addri1> and <addr2> may
span banks. <addri1> must be equal to or lower than <addr2> or else an error will
occur, the “equal to or lower” test being a 24-bit comparison.

When entered with no arguments, disassembly will start at the last known address at
which memory was accessed. At initial startup, that address will be $000000. If only
<addr1> is specified, disassembly will start at that address and proceed until a
maximum of 21 bytes has been disassembled. If both <addr1> and <addr2> are
specified, disassembly will start at <addri1> and end after <addr2> has been
processed, which may cause the display to scroll. Disassembly can be halted at any time
by striking the display “stop key.”

The disassembly display is enlarged as compared to an equivalent 6502/65C02
disassembly display in order to account for 24-bit addresses. A typical disassembly might

appear as follows:

. 002000 BF 9E 12 8F LDA $8F129E,X

. 002004 DD 00 04 CMP $0400, X
. 002007 FO 6E BEQ $2077

. 002009 CA DEX

. 00200A 10 F4 BPL $2000

The byte immediately following the disassembly address will be the instruction opcode.

Disassembling immediate mode instructions other than PEA, REP and SEP is somewhat
complicated by the fact that they may have 8- or 16-bit operands. Normally, Supermon
816 would not be able to determine the proper operand size, since the way in which the
65C816 processes immediate mode operands is a function of status register bits as the
program is running, and is not determined by specific opcodes. For example, the opcode
$A9 applies to LDA #3$01 and LDA #$0201. The byte sequence $A9 $01 $02
$E8 would normally be disassembled to LDA #3$01 followed by COP $ES8, even though
what may have been assembled was LDA #$0201 followed by INX.

Page 16 of 30

Supermon 816 attempts to compensate by keeping track of the most recent REP or SEP
instruction encountered during disassembly, hence attempting to recreate the assembly
sequence that generated the code being disassembled. REP/SEP state information is
initialized to assume 8-bit operands when the disassemble code command is issued with
an address. If the next disassemble command is issued with no addresses, the monitor
will continue to keep track of REP and SEP instructions and will continue to correctly
distinguish between eight-bit and 16-bit immediate mode operands. If a disassemble code
command is again issued with an address, REP/SEP state information will reinitialized
and immediate mode instructions will again be assumed to have 8-bit operands until a
REP instruction is encountered.

Usage example: d 0C2000 0C2020

Page 17 of 30

Fill Memory Range
Syntax: F <addri> <addr2> <fill>
This function writes the eight-bit <f 111> value into all addresses beginning at <addr1>
and ending with <addr2> inclusive. <addri1> must be in the same bank and equal to

or lower than <addr2> or else an error will occur.

Caution must be exercised with this command, as inadvertently overwriting system areas
may trigger undefined hardware behavior or cause a crash.

Usage example: T 0e2000 0e2fff ea

The above example will write a NOP instruction into RAM starting at address $0E2000,
with the final NOP being written to $OE2FFF.

Page 18 of 30

Execute Code
Syntax: G [<addr>]

This function will load the 65C816's registers with the values displayed by the most
recent register dump and then start execution of a program. If no argument is given,
execution will commence at the address displayed in the register dump. Otherwise,
execution will commence at address <addr>. Assuming that the BRK instruction is
properly intercepted by the system (see above discussion in the system integration
section), execution of BRK will return control to Supermon 816, at which time *BRK will
be printed on the console screen, a register dump will occur and the input prompt will
appear.

Usage example: g 002000

Page 19 of 30

Search Memory Range
Syntax: H <addr1> <addr2> <seq>

This function searches (Hunts through) memory for the byte sequence <seq>, starting
at address <addr1> and ending at address <addr2> inclusive. The range set by
<addri> and <addr2> may span banks. <addri1> must be equal to or lower than
<addr2> or else an error will occur, the “equal to or lower” test being a 24-bit
comparison.

<se(> may be entered as one or more whitespace or comma-delimited byte values, or
as a character string. If the latter is desired, the string must be preceded with a single
quote character ('), which will not be included in <seq>. See the below examples for
the correct syntax. A character string search is case-sensitive.

During the search, each address at which <seqg> is found will be printed to the console
screen as a 24-bit hexadecimal number. The search operation can be halted at any time
by striking the display “stop key.” Search speed will be affected by the size of <seq>,
which may a maximum of 32 bytes, as well by the selected memory range.

Usage examples: h 02E000 02E800 A9 04 00 (byte pattern search)
h 0B2000 OB2fff 'testing (character string search)

Page 20 of 30

Execute Subroutine
Syntax: J [<addr>]

This function will load the 65C816's registers with the values displayed by a register
dump and then start execution of a program. If no argument is given, execution will
commence at the address displayed in the most recent register dump. Otherwise,
execution will commence at the 24-bit address <addr>. The execution address will be
treated as the entry point of a subroutine, which means an internal monitor return address
will be pushed to the stack prior to execution of the target code.

Execution of an RTS instruction will return control to Supermon 816 if the hardware
stack remains “in balance,” at which time *RTS will be printed before dumping the
registers. In this case, the stack pointer value in the dump will be what it was prior to
executing the called subroutine, unless the subroutine modified the stack and loaded SP
with a new value to reflect the changes.

CAUTION: The called subroutine must terminate with RTS, not RTL. The monitor
does not JSL to the subroutine. If it is necessary to call a subroutine in a
bank other than the one in which the monitor is executing it will be
necessary to specify a full 24 bit address or change the PB and PC register
values before execution.

Usage example: j 04e015
The above example will call a subroutine at $EOQ15 in bank $04 and assuming the

subroutine ends with RTS and does not modify the stack, control will return to Supermon
816.

Page 21 of 30

Load 65C816 Machine Code
Syntax: L [<bank> [<offset>]]

This function is the means by which data may be transferred into your 65C816 system
from an external foreign source.

Data transfer in is accomplished through the transmission of Motorola hex data records,
also known as S-records, from the data source. The S-record loader processes S1, S5
and S9 records, and accepts but ignores other S-record types. There may be multiple S1
records, but only one each of an S5 and S9 record. Transmission of an S5 record after
all S1 records have been sent is an optional step, but is recommended as an additional
error check. The final record in the data stream must be an S9. General information
about the Motorola S-record format is readily available from a variety of sources and will
not be discussed here.

The data stream is transmitted to your 65C816 system’s auxiliary input port, whose “get
datum” API call (symbolized as getchb) is defined as described above in the system
integration section. As each S1 record arrives, it will be translated to binary, error-
checked and if no error is detected, written into memory. The load operation will be
completed when an S9 record has been received and processed.

Each S1 record includes a load address, which is a 16-bit field that indicates where in
memory the first data byte of the record will be stored. As each data byte in the record
is stored the monitor will increment a working load address. By default, storage will
occur in the program bank (PB) that was displayed in the most recent 65C816 register
dump.

If the optional eight bit bank parameter <bank> is entered, storage will be directed to
that bank. If the optional eight bit page offset parameter <offset> is also entered, it
will be used along with <bank> to perform a relocating load to any page boundary
within the 65C816's address space. During a relocating load, <offset> will be added
to the most significant byte (MSB) of the working load address, with any carry into bit
16 being discarded.

On completion of a successful load, the non-zero load address specified in the S9 record
will be copied to the PC shadow register and will appear in a subsequent register dump.
If an alternate bank was used with the load command, that bank will be copied to the PB
shadow register. If a page offset was also entered, it will be added to the S9 load address
and the new address will be written to the PC shadow register. Hence entering the G or
J command without an argument following a successful load will cause execution to start
at the effective load address.

Page 22 of 30

The load procedure is as follows:

1.

Verity that you have working connection between your system and the data source.
If the connection is via TIA-232 it is strongly recommended that hardware
handshaking be used to pace data flow. Software handshaking is unreliable at speeds
in excess of 9600 bits per second.

At the data source, assemble your code and save it into a “flat” (text) file in
Motorola S-record format. Each S-record must be delimited by an ASCII <LF>
(linefeed, $0A) character or a <CRLF> sequence (carriage return, $0D, followed
$0A). There must be at least one S1 record and only one S9 record. An S5 record
is optional but recommended. The final record must be an S9.

Type L at Supermon 816's prompt, including bank and page offset arguments if a
relocating load is desired. When Supermon 816 is ready to load data Ready : will
be printed on the console, the cursor will appear and a loop will be entered awaiting
input from the data source. You can abort the process at any time by striking the
display “stop key.”

Note: Aborting while records are being loaded and processed will result in an
incomplete load. The PB and PC shadow registers will not be updated if
the load is aborted.

At the data source, perform whatever steps are required to output your S-record file
to the port that is in communication with your 65C816 system. As S-records are
received, Supermon 816 will print a dot on the console screen for each successfully
processed record.

Upon successful processing of the S9 record, the starting and ending addresses for
the load will be printed, the PB and PC shadow registers will be updated as
necessary, and control will return to Supermon 816's input prompt.

In the event of an error, the load will abort and Supermon 816 will print a
diagnostic. In most cases, an error will be due to a mismatch between the checksum
embedded in the most recently received S-record and the checksum calculated during
the load. This sort of error is often the result of transmission glitches on the data
link, but could also be due to a computation error at the originating end involving
the generation of the record’s checksum.

Another possible source of error would be an improperly formatted or corrupted
object code file. At least one S1 record is required, and only one S5 and S9 record
can be present. The total record count in the S5 record must agree with the number
of S1 records that were received and processed.

Page 23 of 30

Caution must be exercised with this command, as inadvertently overwriting system areas
may trigger undefined hardware behavior or cause a crash.

Usage example: 1 4 3e

The above command will perform a relocating load to bank $04, adding $3E00 to the
address of each loaded S-record, discarding any carry into bit 16 of the address.

Page 24 of 30
Display Memory Range
Syntax: M [<addri1> [<addr2>]]

This function dumps the contents of a range of memory into a human-readable format
consisting of hexadecimal byte values and ASCII equivalents. If both arguments are
entered, <addr1> must be equal to or lower than <addr2> or else an error will occur,
the “equal to or lower” test being a 24-bit comparison. The range set by <addr1> and
<addr2> may span banks.

When entered with no arguments, Supermon 816 will start the memory dump at the last
known address at which memory was accessed. At initial startup, that address will be
$000000. If both addresses are omitted or only <addr1> is specified, one page (256
bytes) of data will be dumped. If both <addr1> and <addr2> are specified, the dump
will start at <addr1> and end at <addr2> inclusive, which may cause the display to
scroll. The dump can be halted at any time by striking the display “stop key.”

The display will consist of one or more formatted lines, such as the following example:
>002000 42 43 53 20 54 65 63 68 6E 6F 67 79 00 00 :IEFITIIIETAA

Sixteen bytes will be dumped per line, and bytes in the range $20-$7E inclusive will
also be displayed as ASCII. Bytes outside of that range will be displayed as a dot (.).
If supported by the console hardware, the ASCII portion of the display will be in reverse
video, as depicted in the above example.

Usage example: m 002000 00207f

Page 25 of 30

Display 65C816 Registers
Syntax: R

This function dumps the 65C816's registers as known to Supermon 816. An error will
occur if any arguments are entered. A typical dump following the execution of a
program might be as follows:

PB PC NVmxDIZC .C X .Y SP DP DB
; 01 C207 00110000 1B73 OOAO 0001 CDFF 0000 02

The dumped data are retrieved from Supermon 816’s shadow registers, which are
updated when a running program is interrupted by BRK, or when a subroutine executed
via the J function returns control to Supermon 816 via RTS. See the j register change
function for the procedure used to change register values.

Page 26 of 30

Copy Memory Range
Syntax: T <addr1> <addr2> <addr3>

This function copies (Transfers) memory starting at address <addri> and ending at
address <addr2> inclusive, to memory starting at address <addr3>. <addri1> must
be equal to or lower than <addr2> and in the same bank as <addr2> or else an error
will occur. <addr3> may be in any bank and if in the same bank from which copying
is to take place, may overlap the range set by <addr1> and <addr2> without causing
an error, as long as <addr3> is not the same as <addri>.

Caution must be exercised with this command, as inadvertently overwriting system areas
may trigger undefined hardware behavior or cause a crash.

Usage example: t 002000 0020ff 043000

The above example will copy the memory range $002000 - $0020FF to $043000.

Page 27 of 30

Edit Memory
Syntax: > <addr> [<data>]

This function may be used to edit memory. If entered with a valid address only it will
function as a one-line memory dump, dumping 16 bytes. Otherwise, memory starting
at address <addr> will be overwritten with the data in <data>. <data> may be
entered as one or more whitespace or comma-delimited byte values, up to 32, or as a
character string of no more than 32 characters. If the latter is desired, the string must be
preceded with a single quote character ('), which will not be included in <data>. See
the below examples for the correct syntax.

Caution must be exercised with this command, as inadvertently overwriting system areas
may trigger undefined hardware behavior or cause a crash.

Usage examples: > 002000 00 EA 00 EA (enters a byte pattern)
> 042000 'testing 123 (enters a character string)

Page 28 of 30

Modify 65C816 Registers
Syntax: ; [<PB> [<PC> [<SR> ...]]]

This function is used to change one or more of the shadow values that are loaded into the
65C816's registers when G or J is used to execute a program. If no arguments are
entered the effect is the same as the R (dump registers) function. If you wish to change
the register values, enter new values in the same order and of the correct size for the
corresponding register. You need only enter data up to the last register to be changed.
Upon entering the new values another register dump will occur displaying the new
values.

Usage example: ;4 2000 %00110000
The above will set PB to $04, PC to $2000 and SR to $30. No other registers will be

changed. When a G or J command is entered, program execution will begin at
$042000, with all status register bits except m and X cleared.

Page 29 of 30

Exit Supermon 816
Syntax: X

This function will terminate execution of Supermon 816 and return control to the local
operating system via the vector vecexit.

Page 30 of 30

Supermon 816 copyrighted ©1991-2021 by BCS Technology Limited. All rights reserved.

Permission is hereby granted to use, copy, modify and distribute Supermon 816, either as stand-alone code or as part
of a package, such as machine firmware. In all cases, 8€S Technology Limited requires that a copyright acknowledgment
worded as follows must be present in any documentation included with the distribution of Supermon 816:

Portions of this software copyright ©1991-2021 by BCS Technology Limited. All rights reserved.

The above copyright acknowledgment must also appear at least once in the source code of the package into which this
Supermon 816 has been integrated. If distributing Supermon 816 as stand-alone code, the copyright header present in
the original source code published by 8¢S Tecknology Limited must be retained unedited.

Redistribution of this software in any form must be at no charge to the end user. This code or any part thereof,
including but not limited to any derivation, MAY NOT be incorporated into any package intended for sale, unless
written permission to do so has been granted by 8¢S Technology Limited.

THERE IS NO WARRANTY OF ANY KIND WITH THIS SOFTWARE. While it is believed that all code will perform as
described, the user assumes all risk in connection with the incorporation of this software into any system. If any of the
aforementioned provisions are not acceptable to you, do not distribute and/or use this software, and immediately delete
it from your system.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

