
Raspberry Pi 2 Model B v1.1 65C02 Simulator

I created this software package to provide an inexpensive development system for 65C02 code running

on modern hardware. The Pi has serial, SPI, I2C, Ethernet, audio, SD card, and video peripherals.

I have managed so far to gain access to the serial UART, video system, and read-only access to the SD

card’s root directory.

I will probably work on the I2C and SPI interfaces next.

With the addition of read access from the SD card, I am now able to provide a means for users to

provide their own 65C02 OS. My SBC-2 OS will still load, but if the file is found and loaded from the SD

card, it will overwrite the default SBC-2 OS.

The memory map is as follows:

$0000 - $7FFF = RAM

$8000 - $80FF = IO

$8100 - $FFFF = ROM

Further down this instruction, I’ll provide details on the IO addressing.

To load you own OS into the simulator, create a binary image of your OS and name it “SBCOS.ROM”.

The ROM image file needs to be exactly 32,768 bytes long. The first page will not be used, but the

remainder is available for your use. Be sure to load the rom on to root directory of the SD card.

The SD Card reader code was verified on 3 different SD cards. All were formatted with a 256MB FAT

partition. This is how the Raspian SD is configured when that image is built. If the simulator cannot read

your SD card, check the size of the 1st partition and be sure it is formatted using FAT.

The IO page is set up with the currently supported devices. I will expand it as I add more support.

 READ

 0x8000 read serial data register

 0x8001 check status of serial input buffer: 0= no data, 0xFF=data present

 0x8010 check status of serial output buffer: 0=full (wait), 0xFF=ready to accept data

 0x8030 read lowest 8 bits of the 1MHz system timer

 0x8040 read video color register

 0x8041 read video Y register

 0x8042 read LSB of video X register

 0x8043 read MSB of video X register

 0x8044 read Video Core status: 0x00=ready for command, 0xFF= busy

 0x8048 read Video Core status: 0x00=ready for command, 0xFF= busy

 WRITE

 0x8010 Write data to serial port

 0x8020 Turn system LED off (any value)

 0x8021 Turn System LED on (any value)

 0x8040 Set pixel color Color = 0x00RRGGBB

 0x8041 set pixel Y register 0-199

 0x8042 set pixel LSB X register 0-255 When MSB=1, range is 0-63

 0x8043 set pixel MSB X register 0-1

 0x8044 Signal Video Core to plot the pixel (any value)

 0x8045 Clear the screen (any value)

 0x8048 Print ASCII character on the screen and advance the cursor

 0x8049 Set cursor to custom character (ASCII value)

 0x804A Set character background color Color = 0x00RRGGBB

 0x804B Set character foreground color Color = 0x00RRGGBB

The video display screen is set up as a 320 x 200 pixel graphical display using 6 bits for color, 2 for each

RED, GREEN, & BLUE. It uses the HDMI port. The color byte is formatted as 0x00RRGGBB. Writes

outside of the 230x200 range will be ignored. You need to set up all 4 locates: color, Y coordinate, X low

byte, and X high byte before you write location 0x8044. When using text, you can set the background

and character colors using the same color byte scheme. In this way, each character can have its own

color pattern.

The text generator uses some common ASCII control codes to generate the display. In addition, there

are some commands in the upper half of the character map to allow for direct placement of the cursor

and to select cursor shape and visibility. Also, using ASCII codes 0x01 and 0x02 will control what the

upper half of the ASCII code generates. Setting it to upper replaces the cursor controls with more

graphical symbols.

It might best be understood by playing with sending various codes to 0x8048 and observing the results.

Here is a copy of the font map, it has both Low font (0x01) and high font (0x02) shown:

 Low Font

00 null

01 Set Low Font

02 Set High Font

08 backspace

09 tab

0A linefeed

0C formfeed

0D return

20 - 7E std ASCII

7F delete

80-9F
80
90

A0 - B8 setrow A0 (top) to B8 (bottom)

B9 null

BA cursor home

BB cursor off

BC cursor block

BD
cursor
underscore

BE cursor on

BF null

C0 - E7 Set column C0 (left) to E7 (right)

E8 cursor up

E9 Cursor down

EA Cursor left

EB Cursor right

 * Any code not shown is "null", does nothing

 High Font

00 null

01 Set Low Font

02 Set High Font

08 backspace

09 tab

0A Line feed

0C Form feed

0D return

20 -
7E

std ASCII

7F

80 -
FF

80
90
A0
B0
C0
D0
E0
F0

The serial port is configured at 115,200 baud, No parity, 8 data bits, & 1 Stop bit. The port pins are on

the expansion port. Pin 6 is Gnd, pin 8 is TX, and pin 10 is RX. This requires a 3.3V TTL serial adapter. A

5V adapter can damage to IO ports. These are inexpensive and can be found online.

If you are not sure where to start, you can try this program with my SBCOS. There is a little more infor

about it here: https://sbc.rictor.org/sbcos.html

The Zip file will contain the following files:

To be loaded to the SD card:

 Start.elf – PI’s core startup code

 Bootcode.bin – Secondary boot file

 Config.txt – used to set up turbo mode and sets the clock to 900MHz

 Kernel7.img – this is the 6502 Simulator package – it has a copy of my SBCOS included.

 Raspberry PI 2 Model B v1.1.pdf – This file

This program is currently ustilizing 2 of the 4 cores from the PI’s processor. The first core sets up the

system caches and memory manager, tries to load the SBCOS.ROM file from the SD card, and start the

simulator. The seconds core initializes the display and stands by waiting for input from the simulator.

The other two cores are “parked” in a low-power state. I plan to put them to work also when I get to

things like audio and Ethernet.

I estimate that the simulator is running at about 125MHz. This is not a consistent speed, as there is no

cycle counting or pacing being done, and some instructions will take longer than others.

I hope you find this useful and fun!

Daryl

https://sbc.rictor.org/sbcos.html

